全文获取类型
收费全文 | 266篇 |
免费 | 18篇 |
国内免费 | 1篇 |
专业分类
285篇 |
出版年
2024年 | 1篇 |
2023年 | 7篇 |
2022年 | 13篇 |
2021年 | 19篇 |
2020年 | 8篇 |
2019年 | 12篇 |
2018年 | 11篇 |
2017年 | 9篇 |
2016年 | 16篇 |
2015年 | 20篇 |
2014年 | 16篇 |
2013年 | 19篇 |
2012年 | 19篇 |
2011年 | 23篇 |
2010年 | 10篇 |
2009年 | 6篇 |
2008年 | 10篇 |
2007年 | 7篇 |
2006年 | 9篇 |
2005年 | 5篇 |
2004年 | 9篇 |
2003年 | 11篇 |
2002年 | 3篇 |
1999年 | 4篇 |
1998年 | 2篇 |
1997年 | 2篇 |
1995年 | 1篇 |
1986年 | 1篇 |
1985年 | 1篇 |
1984年 | 3篇 |
1983年 | 1篇 |
1981年 | 1篇 |
1969年 | 2篇 |
1959年 | 3篇 |
1955年 | 1篇 |
排序方式: 共有285条查询结果,搜索用时 15 毫秒
61.
62.
Osama Omar Yousif Mea’ad Kadhum Hassan Lamia Mustafa Al-Naama 《Biological trace element research》2018,182(2):295-302
This study investigated neurotoxicity of chronic fluorosis in the rat hippocampus. Newly weaning, male, Sprague-Dawley (SD) rats were administered 15, 30, and 60 mg/L sodium fluoride (NaF) solution (fluorine ion concentration 8.25, 16.50, and 33.00 mg/L, respectively), and tap water, for 18 months. The neurotoxicological mechanism was examined with a focus on intracellular calcium overload. Results showed that as the fluoride concentration increased, calcium ion concentration [Ca2+], the expression of calcium/calmodulin-dependent protein kinase II α (CaMKIIα), and the expression of catus proto-oncogene protein c-fos (c-fos) all tend to increase. Compared to the control group, Ca2+, CaMKIIα, and c-fos significantly increased (P < 0.05) in the moderate-fluoride and the high-fluoride groups. These results indicate that Ca2+/CaMKIIα/c-fos channel signal may be the molecular mechanism of central nervous system damage caused by chronic fluoride intoxication. Moreover, elevated Ca2+ concentration in the hippocampus may be the initiating factor of neuronal apoptosis induced by fluoride. 相似文献
63.
Tian J Ling L Shboul M Lee H O'Connor B Merriman B Nelson SF Cool S Ababneh OH Al-Hadidy A Masri A Hamamy H Reversade B 《American journal of human genetics》2010,87(6):768-778
We delineated a syndromic recessive preaxial brachydactyly with partial duplication of proximal phalanges to 16.8 Mb over 4 chromosomes. High-throughput sequencing of all 177 candidate genes detected a truncating frameshift mutation in the gene CHSY1 encoding a chondroitin synthase with a Fringe domain. CHSY1 was secreted from patients' fibroblasts and was required for synthesis of chondroitin sulfate moieties. Noticeably, its absence triggered massive production of JAG1 and subsequent NOTCH activation, which could only be reversed with a wild-type but not a Fringe catalytically dead CHSY1 construct. In vitro, depletion of CHSY1 by RNAi knockdown resulted in enhanced osteogenesis in fetal osteoblasts and remarkable upregulation of JAG2 in glioblastoma cells. In vivo, chsy1 knockdown in zebrafish embryos partially phenocopied the human disorder; it increased NOTCH output and impaired skeletal, pectoral-fin, and retinal development. We conclude that CHSY1 is a secreted FRINGE enzyme required for adjustment of NOTCH signaling throughout human and fish embryogenesis and particularly during limb patterning. 相似文献
64.
65.
Khelifi-Touhami F Taha RA Badary OA Lezzar A Hamada FM 《Journal of biochemical and molecular toxicology》2003,17(6):324-328
The effects of three natural phenolic acids (caffeic, ferulic, and p-coumaric) on the rat thyroid gland were examined in a 3-week oral-treatment study. Forty male Wistar albino rats, divided into groups of 10 rats each and fed iodine-rich diet, were administered by gastrointestinal tube saline (control), caffeic acid, ferulic acid, or p-coumaric acid at a dose level of 0.25 micromol/kg/day for 3 weeks. The mean absolute and relative thyroid weights in caffeic, ferulic, or p-coumaric acid groups were significantly increased to 127 and 132%, 146 and 153%, or 189 and 201% compared to control value, respectively. Histological examination of the thyroids of p-coumaric acid group revealed marked hypertrophy and/or hyperplasia of the follicles. Caffeic or ferulic groups showed slight to moderate thyroid gland enlargement. Thyroid lesions in p-coumaric acid group were associated with significant increases in cellular proliferation as indicated by [(3)H]thymidine incorporation. In addition, the goitrogenic effect of p-coumaric acid was further confirmed by significant decreases (50%) in serum tri-iodothyronine (T(3)) and thyroxine (T(4)), and a parallel increase (90%) in serum thyroid stimulating hormone (TSH) compared to control group. These results indicate that administration of p-coumaric acid at relatively high doses induces goiter in rats. 相似文献
66.
Elnakish MT Awad MM Hassona MD Alhaj MA Kulkarni A Citro LA Sayyid M Abouelnaga ZA El-Sayed O Kuppusamy P Moldovan L Khan M Hassanain HH 《American journal of physiology. Heart and circulatory physiology》2011,301(3):H868-H880
Rac1-GTPase activation plays a key role in the development and progression of cardiac remodeling. Therefore, we engineered a transgenic mouse model by overexpressing cDNA of a constitutively active form of Zea maize Rac gene (ZmRacD) specifically in the hearts of FVB/N mice. Echocardiography and MRI analyses showed cardiac hypertrophy in old transgenic mice, as evidenced by increased left ventricular (LV) mass and LV mass-to-body weight ratio, which are associated with relative ventricular chamber dilation and systolic dysfunction. LV hypertrophy in the hearts of old transgenic mice was further confirmed by an increased heart weight-to-body weight ratio and histopathology analysis. The cardiac remodeling in old transgenic mice was coupled with increased myocardial Rac-GTPase activity (372%) and ROS production (462%). There were also increases in α(1)-integrin (224%) and β(1)-integrin (240%) expression. This led to the activation of hypertrophic signaling pathways, e.g., ERK1/2 (295%) and JNK (223%). Pravastatin treatment led to inhibition of Rac-GTPase activity and integrin signaling. Interestingly, activation of ZmRacD expression with thyroxin led to cardiac dilation and systolic dysfunction in adult transgenic mice within 2 wk. In conclusion, this is the first study to show the conservation of Rho/Rac proteins between plant and animal kingdoms in vivo. Additionally, ZmRacD is a novel transgenic model that gradually develops a cardiac phenotype with aging. Furthermore, the shift from cardiac hypertrophy to dilated hearts via thyroxin treatment will provide us with an excellent system to study the temporal changes in cardiac signaling from adaptive to maladaptive hypertrophy and heart failure. 相似文献
67.
Phenylthiourea disrupts thyroid function in developing zebrafish 总被引:1,自引:0,他引:1
Thyroid hormone (T4) can be detected in thyroid follicles in wild-type zebrafish larvae from 3 days of development, when the thyroid has differentiated. In contrast, embryos or larvae treated with goitrogens (substances such as methimazole, potassium percholorate, and 6-n-propyl-2-thiouracil) are devoid of thyroid hormone immunoreactivity.Phenythiourea (PTurea; also commonly known as PTU) is widely used in zebrafish research to suppress pigmentation in developing embryos/fry. PTurea contains a thiocarbamide group that is responsible for goitrogenic activity in methimazole and 6-n-propyl-2-thiouracil. In the present study, we show that commonly used doses of 0.003% PTurea abolish T4 immunoreactivity of the thyroid follicles of zebrafish larvae. As development of the thyroid gland is not affected, these data suggest that PTurea blocks thyroid hormone production. Like other goitrogens, PTurea causes delayed hatching, retardation and malformation of embryos or larvae with increasing doses. At doses of 0.003% PTurea, however, toxic side effects seem to be at a minimum, and the maternal contribution of the hormone might compensate for compromised thyroid function during the first days of development. 相似文献
68.
69.
Rapid UPLC-MS/MS method for routine analysis of plasma pristanic, phytanic, and very long chain fatty acid markers of peroxisomal disorders 总被引:1,自引:0,他引:1
Al-Dirbashi OY Santa T Rashed MS Al-Hassnan Z Shimozawa N Chedrawi A Jacob M Al-Mokhadab M 《Journal of lipid research》2008,49(8):1855-1862
Quantification of pristanic acid, phytanic acid, and very long chain fatty acids (i.e., hexacosanoic, tetracosanoic, and docosanoic acids) in plasma is the primary method for investigateing a multitude of peroxisomal disorders (PDs). Typically based on GC-MS, existing methods are time-consuming and laborious. In this paper, we present a rapid and specific liquid chromatography tandem mass spectrometric method based on derivatization with 4-[2-(N,N-dimethylamino)ethylaminosulfonyl]-7-(2-aminoethylamino)-2,1,3-benzoxadiazole (DAABD-AE). Derivatization was undertaken to improve the poor mass spectrometric properties of these fatty acids. Analytes in plasma (20 mul) were hydrolyzed, extracted, and derivatized with DAABD-AE in approximately 2 h. Derivatives were separated on a reverse-phase column and detected by positive-ion electrospray ionization tandem mass spectrometry with a 5 min injection-to-injection time. Calibration plots were linear over ranges that cover physiological and pathological concentrations. Intraday (n = 12) and interday (n = 10) variations at low and high concentrations were less than 9.2%. Reference intervals in normal plasma (n = 250) were established for each compound and were in agreement with the literature. Using specimens from patients with established diagnosis (n = 20), various PDs were reliably detected. In conclusion, this method allows for the detection of at least nine PDs in a 5 min analytical run. Furthermore, this derivatization approach is potentially applicable to other disease markers carrying the carboxylic group. 相似文献
70.
We have previously shown that a low-copper (Cu) diet produced alterations in placental Cu transport and fetal Cu stores. Because
Cu deficiency has been associated with lipid deposition in rat dam liver, we hypothesized that a high fat intake, a prevalent
dietary habit in many populations, may worsen fetal Cu status and its closely linked iron (Fe) deposits. Pregnant rats were
fed one of four diets during the second half of gestation: NFNCu: normal fat (7%), normal Cu (6 mg/kg); HFNCu: high fat (21%),
normal Cu; NFLCu: normal fat, low Cu (0.6 mg/kg), and HFLCu: high fat, low Cu. One day before delivery, dams were anesthetized,
and maternal as well as fetal plasma and tissues were obtained. Maternal, fetal, and placental weights were indistinguishable
regardless of the group. Dam plasma Cu and placental Cu were lower in both LCu groups than in the NFNCu or the HFNCu groups.
However, fetal plasma Cu was similar in all treatment groups. Dam and fetal liver Cu stores were reduced in the LCu groups
compared to the NCu groups. This resulted in lower fetal/maternal liver Cu ratios in the NFLCu (1.79 ± 0.14,p < 0.05) and HFLCu (1.59 ± 0.21,p < 0.05) as compared to the NFNCu (4.12 ± 0.44) and the HFNCu (4.15 ± 0.27). Dam liver Fe was higher in the NFNCu than in
HFNCu group (1.10 ± 0.8 vs. 0.89 ± 0.06 μmol/g,p < 0.05); fetal liver Fe from HFNCu and NFLCu dams was lower than that from NFNCu fetuses (NFNCu: 2.42 ± 0.14; HFNCu: 1.92
± 0.15,p < 0.05; NFLCu: 1.81 ± 0.10,p < 0.01). Fetuses of the HFLCu group had a lower heart Fe than the NFNCu group (0.56 ± 0.03 vs. 44.0 ± 3.0 μg/g,p < 0.01). These data indicate that a maternal high-fat diet can potentially aggravate the effects of Cu deficiency by further
altering fetal Cu and Fe tissue stores. 相似文献