首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   555篇
  免费   31篇
  586篇
  2023年   1篇
  2022年   9篇
  2021年   10篇
  2020年   5篇
  2019年   12篇
  2018年   8篇
  2017年   5篇
  2016年   15篇
  2015年   23篇
  2014年   25篇
  2013年   46篇
  2012年   35篇
  2011年   43篇
  2010年   32篇
  2009年   36篇
  2008年   33篇
  2007年   31篇
  2006年   34篇
  2005年   35篇
  2004年   24篇
  2003年   26篇
  2002年   30篇
  2001年   5篇
  2000年   7篇
  1999年   6篇
  1998年   4篇
  1997年   5篇
  1996年   3篇
  1995年   5篇
  1994年   1篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1984年   3篇
  1983年   4篇
  1982年   1篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有586条查询结果,搜索用时 15 毫秒
1.
The major lipid constituent of symbiotic gram-positive bacteria in animals are phosphatidylglycerol, cardiolipin and dihexaosyl diglycerides (DH-DG), whose hydrophobic structures are characteristic of the environments, and the carbohydrate structures of DH-DGs are bacterial species-characteristic. Immunization of rabbits with intestinal lactobacilli generated antibodies against DH-DGs and their modified structures, among which Galα1-6-substituted DH-DG, i.e., Lactobacillus tetrahexaosyl diglyceride (LacTetH-DG), reacted with antibodies more intensely than DH-DG. Whereas, from the 16S-rRNA sequence, the intestinal lactobacilli in murine digestive tracts were revealed to be L. johnsonii, in which LacTetH-DG is present at the concentration of 2.2 ng per 1?×?106 cells. To obtain more accurate estimates of intestinal lactobacilli in several regions of the digestive tract of mice, LacTetH-DG was detected by TLC-immunostaining with anti-Lactobacillus antisera, being found in the stomach, cecum and colon of normal breeding mice, 1.0?×?109, 3.5?×?109 and 7.4?×?109 cells, respectively. Administration of penicillin and streptomycin for 6 days resulted in a reduction in the number of intestinal lactobacilli, the levels being 0 %, 30 % and 4 % of the control ones in the stomach, cecum and colon, respectively, which was associated with the accumulation of the contents in the tracts from the stomach to the cecum and with diarrhea. In addition, a reduced amount of fucosyl GA1 (FGA1) and a compensatory increase in GA1 due to the reduced activity of α1,2-fucosyltransferase in the small intestine and the enhanced discharge of FGA1 into the contents occurred in mice, probably due to the altered population of bacteria caused by administration of penicillin and streptomycin.  相似文献   
2.
Human saliva, which contains nitrite, is normally mixed with gastric juice, which contains ascorbic acid (AA). When saliva was mixed with an acidic buffer in the presence of 0.1 mM AA, rapid nitric oxide formation and oxygen uptake were observed. The oxygen uptake was due to the oxidation of nitric oxide, which was formed by AA-dependent reduction of nitrite under acidic conditions, by molecular oxygen. A salivary component SCN enhanced the nitric oxide formation and oxygen uptake by the AA/nitrite system. The oxygen uptake by the AA/nitrite/SCN system was also observed in an acidic buffer solution. These results suggest that oxygen is normally taken up in the stomach when saliva and gastric juice are mixed.  相似文献   
3.
C4 plants have two carboxylases which function in photosynthesis. One, phosphoenolpyruvate carboxylase (PEPC) is localized in mesophyll cells, and the other, ribulose bisphosphate carboxylase (RuBPC) is found in bundle sheath cells. In contrast, C3 plants have only one photosynthetic carboxylase, RuBPC, which is localized in mesophyll cells. The expression of PEPC in C3 mesophyll cells is quite low relative to PEPC expression in C4 mesophyll cells. Two chimeric genes have been constructed consisting of the structural gene encoding β-glucuronidase (GUS) controlled by two promoters from C4 (maize) photosynthetic genes: (i) the PEPC gene (pepc) and (ii) the small subunit of RuBPC (rbcS). These constructs were introduced into a C3 cereal, rice. Both chimeric genes were expressed almost exclusively in mesophyll cells in the leaf blades and leaf sheaths at high levels, and no or very little activity was observed in other cells. The expression of both genes was also regulated by light. These observations indicate that the regulation systems which direct cell-specific and light-inducible expression of pepc and rbcS in C4 plants are also present in C3 plants. Nevertheless, expression of endogenous pepc in C3 plants is very low in C3 mesophyll cells, and the cell specificity of rbcS expression in C3 plants differs from that in C4 plants. Rice nuclear extracts were assayed for DNA-binding protein(s) which interact with a cis-regulatory element in the pepc promoter. Gel-retardation assays indicate that a nuclear protein with similar DNA-binding specificity to a maize nuclear protein is present in rice. The possibility that differences in pepc expression in a C3 plant (rice) and C4 plant (maize) may be the result of changes in cis-acting elements between pepc in rice and maize is discussed. It also appears that differences in the cellular localization of rbcS expression are probably due to changes in a trans-acting factor(s) required for rbcS expression.  相似文献   
4.
Human CD46 is a receptor for the M protein of group A streptococcus (GAS). The emm1 GAS strain GAS472 was isolated from a patient suffering from streptococcal toxic shock‐like syndrome. Human CD46‐expressing transgenic (Tg) mice developed necrotizing fasciitis associated with osteoclast‐mediated progressive and severe bone destruction in the hind paws 3 days after subcutaneous infection with 5 × 105 colony‐forming units of GAS472. GAS472 infection induced expression of the receptor activator of nuclear factor‐κB ligand (RANKL) while concomitantly reducing osteoprotegerin expression in the hind limb bones of CD46 Tg mice. Micro‐computed tomography analysis of the bones suggested that GAS472 infection induced local bone erosion and systemic bone loss in CD46 Tg mice. Because treatment with monoclonal antibodies (mAbs) against mouse CD4+ and CD8+ T lymphocytes did not inhibit osteoclastogenesis, T lymphocyte‐derived RANKL was not considered a major contributor to massive bone loss during GAS472 infection. However, immunohistochemical analysis of the hind limb bones showed that GAS472 infection stimulated RANKL production in various bone marrow cells, including fibroblast‐like cells. Treatment with a mAb against mouse RANKL significantly inhibited osteoclast formation and bone resorption. These data suggest that increased expression of RANKL in heterogeneous bone marrow cells provoked bone destruction during GAS infection.  相似文献   
5.
6.
Fanconi anaemia (FA) is a rare hereditary disorder characterized by genomic instability and cancer susceptibility. A key FA protein, FANCD2, is targeted to chromatin with its partner, FANCI, and plays a critical role in DNA crosslink repair. However, the molecular function of chromatin-bound FANCD2-FANCI is still poorly understood. In the present study, we found that FANCD2 possesses nucleosome-assembly activity in vitro. The mobility of histone H3 was reduced in FANCD2-knockdown cells following treatment with an interstrand DNA crosslinker, mitomycin C. Furthermore, cells harbouring FANCD2 mutations that were defective in nucleosome assembly displayed impaired survival upon cisplatin treatment. Although FANCI by itself lacked nucleosome-assembly activity, it significantly stimulated FANCD2-mediated nucleosome assembly. These observations suggest that FANCD2-FANCI may regulate chromatin dynamics during DNA repair.  相似文献   
7.
Receptor-like kinases (RLK) comprise a large gene family within the Arabidopsis genome and play important roles in plant growth and development as well as in hormone and stress responses. Here we report that a leucine-rich repeat receptor-like kinase (LRR-RLK), RECEPTOR-LIKE PROTEIN KINASE2 (RPK2), is a key regulator of anther development in Arabidopsis. Two RPK2 T-DNA insertional mutants (rpk2-1 and rpk2-2) displayed enhanced shoot growth and male sterility due to defects in anther dehiscence and pollen maturation. The rpk2 anthers only developed three cell layers surrounding the male gametophyte: the middle layer was not differentiated from inner secondary parietal cells. Pollen mother cells in rpk2 anthers could undergo meiosis, but subsequent differentiation of microspores was inhibited by tapetum hypertrophy, with most resulting pollen grains exhibiting highly aggregated morphologies. The presence of tetrads and microspores in individual anthers was observed during microspore formation, indicating that the developmental homeostasis of rpk2 anther locules was disrupted. Anther locules were finally crushed without stomium breakage, a phenomenon that was possibly caused by inadequate thickening and lignification of the endothecium. Microarray analyses revealed that many genes encoding metabolic enzymes, including those involved in cell wall metabolism and lignin biosynthesis, were downregulated throughout anther development in rpk2 mutants. RPK2 mRNA was abundant in the tapetum of wild-type anthers during microspore maturation. These results suggest that RPK2 controls tapetal cell fate by triggering subsequent tapetum degradation, and that mutating RPK2 impairs normal pollen maturation and anther dehiscence due to disruption of key metabolic pathways.  相似文献   
8.
A series of 3-acetyl-2,5-disubstituted-2,3-dihydro-1,3,4-oxadiazole derivatives was synthesized and their activity screened in vitro against Staphylococcus aureus, Trypanosoma cruzi, and Candida albicans. The bioactivity was expressed as minimum inhibitory concentration (MIC) for S. aureus strains, and as fifty-percent inhibitory concentration (IC(50)) of parasite population growth for T. cruzi. A molecular modeling approach was performed to establish qualitative relationships regarding the biological data and the compounds' physicochemical properties. The 5-(4-OC(4)H(9)Ph, 5l), and 5-(4-CO(2)CH(3)Ph, 5o) derivatives were the most active compounds for S. aureus ATCC 25923 (MIC=1.95-1.25 μg/mL) and T. cruzi (IC(50)=7.91 μM), respectively. Also, a preliminary evaluation against C. albicans involving some compounds was performed and the 5-(4-CH(3)Ph, 5e) derivative was the most active compound (MIC=3.28-2.95 μg/mL). In this preliminary study, all synthesized 3-acetyl-2,5-disubstituted-2,3-dihydro-1,3,4-oxadiazole derivatives were active against all microorganisms tested.  相似文献   
9.

Background

Phospholipase D (PLD) catalyzes conversion of phosphatidylcholine into choline and phosphatidic acid, leading to a variety of intracellular signal transduction events. Two classical PLDs, PLD1 and PLD2, contain phosphatidylinositide-binding PX and PH domains and two conserved His-x-Lys-(x)4-Asp (HKD) motifs, which are critical for PLD activity. PLD4 officially belongs to the PLD family, because it possesses two HKD motifs. However, it lacks PX and PH domains and has a putative transmembrane domain instead. Nevertheless, little is known regarding expression, structure, and function of PLD4.

Methodology/Principal Findings

PLD4 was analyzed in terms of expression, structure, and function. Expression was analyzed in developing mouse brains and non-neuronal tissues using microarray, in situ hybridization, immunohistochemistry, and immunocytochemistry. Structure was evaluated using bioinformatics analysis of protein domains, biochemical analyses of transmembrane property, and enzymatic deglycosylation. PLD activity was examined by choline release and transphosphatidylation assays. Results demonstrated low to modest, but characteristic, PLD4 mRNA expression in a subset of cells preferentially localized around white matter regions, including the corpus callosum and cerebellar white matter, during the first postnatal week. These PLD4 mRNA-expressing cells were identified as Iba1-positive microglia. In non-neuronal tissues, PLD4 mRNA expression was widespread, but predominantly distributed in the spleen. Intense PLD4 expression was detected around the marginal zone of the splenic red pulp, and splenic PLD4 protein recovered from subcellular membrane fractions was highly N-glycosylated. PLD4 was heterologously expressed in cell lines and localized in the endoplasmic reticulum and Golgi apparatus. Moreover, heterologously expressed PLD4 proteins did not exhibit PLD enzymatic activity.

Conclusions/Significance

Results showed that PLD4 is a non-PLD, HKD motif-carrying, transmembrane glycoprotein localized in the endoplasmic reticulum and Golgi apparatus. The spatiotemporally restricted expression patterns suggested that PLD4 might play a role in common function(s) among microglia during early postnatal brain development and splenic marginal zone cells.  相似文献   
10.
In spite of the importance of hyaluronan in host protection against infectious organisms in the alveolar spaces, its role in mycobacterial infection is unknown. In a previous study, we found that mycobacteria interact with hyaluronan on lung epithelial cells. Here, we have analyzed the role of hyaluronan after mycobacterial infection was established and found that pathogenic mycobacteria can grow by utilizing hyaluronan as a carbon source. Both mouse and human possess 3 kinds of hyaluronan synthases (HAS), designated HAS1, HAS2, and HAS3. Utilizing individual HAS-transfected cells, we show that HAS1 and HAS3 but not HAS2 support growth of mycobacteria. We found that the major hyaluronan synthase expressed in the lung is HAS1, and that its expression was increased after infection with Mycobacterium tuberculosis. Histochemical analysis demonstrated that hyaluronan profoundly accumulated in the granulomatous legion of the lungs in M. tuberculosis-infected mice and rhesus monkeys that died from tuberculosis. We detected hyaluronidase activity in the lysate of mycobacteria and showed that it was critical for hyaluronan-dependent extracellular growth. Finally, we showed that L-Ascorbic acid 6-hexadecanoate, a hyaluronidase inhibitor, suppressed growth of mycobacteria in vivo. Taken together, our data show that pathogenic mycobacteria exploit an intrinsic host-protective molecule, hyaluronan, to grow in the respiratory tract and demonstrate the potential usefulness of hyaluronidase inhibitors against mycobacterial diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号