首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   268篇
  免费   24篇
  2023年   2篇
  2022年   5篇
  2021年   7篇
  2020年   10篇
  2019年   3篇
  2018年   7篇
  2017年   9篇
  2016年   12篇
  2015年   18篇
  2014年   12篇
  2013年   16篇
  2012年   25篇
  2011年   21篇
  2010年   9篇
  2009年   10篇
  2008年   15篇
  2007年   14篇
  2006年   24篇
  2005年   19篇
  2004年   10篇
  2003年   14篇
  2002年   12篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1980年   1篇
  1976年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有292条查询结果,搜索用时 15 毫秒
91.
Kv1.3 channels play a pivotal role in the activation and migration of T-lymphocytes. These functions are accompanied by the channels'' polarization, which is essential for associated downstream events. However, the mechanisms that govern the membrane movement of Kv1.3 channels remain unclear. F-actin polymerization occurs concomitantly to channel polarization, implicating the actin cytoskeleton in this process. Here we show that cortactin, a factor initiating the actin network, controls the membrane mobilization of Kv1.3 channels. FRAP with EGFP-tagged Kv1.3 channels demonstrates that knocking down cortactin decreases the actin-based immobilization of the channels. Using various deletion and mutation constructs, we show that the SH3 motif of Kv1.3 mediates the channel immobilization. Proximity ligation assays indicate that deletion or mutation of the SH3 motif also disrupts interaction of the channel with cortactin. In T-lymphocytes, the interaction between HS1 (the cortactin homologue) and Kv1.3 occurs at the immune synapse and requires the channel''s C-terminal domain. These results show that actin dynamics regulates the membrane motility of Kv1.3 channels. They also provide evidence that the SH3 motif of the channel and cortactin plays key roles in this process.  相似文献   
92.
Sexual selection and aerodynamic forces affecting structural properties of the flight feathers of birds are poorly understood. Here, we compared the structural features of the innermost primary wing feather (P1) and the sexually dimorphic outermost (Ta6) and monomorphic second outermost (Ta5) tail feathers of barn swallows (Hirundo rustica) from a Romanian population to investigate how sexual selection and resistance to aerodynamic forces affect structural differences among these feathers. Furthermore, we compared structural properties of Ta6 of barn swallows from six European populations. Finally, we determined the relationship between feather growth bars width (GBW) and the structural properties of tail feathers. The structure of P1 indicates strong resistance against aerodynamic forces, while the narrow rachis, low vane density and low bending stiffness of tail feathers suggest reduced resistance against airflow. The highly elongated Ta6 is characterized by structural modifications such as large rachis width and increased barbule density in relation to the less elongated Ta5, which can be explained by increased length and/or high aerodynamic forces acting at the leading tail edge. However, these changes in Ta6 structure do not allow for full compensation of elongation, as reflected by the reduced bending stiffness of Ta6. Ta6 elongation in males resulted in feathers with reduced resistance, as shown by the low barb density and reduced bending stiffness compared to females. The inconsistency in sexual dimorphism and in change in quality traits of Ta6 among six European populations shows that multiple factors may contribute to shaping population differences. In general, the difference in quality traits between tail feathers cannot be explained by the GBW of feathers. Our results show that the material and structural properties of wing and tail feathers of barn swallows change as a result of aerodynamic forces and sexual selection, although the result of these changes can be contrasting.  相似文献   
93.
Homologous recombination (HR) is critical for the repair of double strand breaks and broken replication forks. Although HR is mostly error free, inherent or environmental conditions that either suppress or induce HR cause genomic instability. Despite its importance in carcinogenesis, due to limitations in our ability to detect HR in vivo, little is known about HR in mammalian tissues. Here, we describe a mouse model in which a direct repeat HR substrate is targeted to the ubiquitously expressed Rosa26 locus. In the Rosa26 Direct Repeat-GFP (RaDR-GFP) mice, HR between two truncated EGFP expression cassettes can yield a fluorescent signal. In-house image analysis software provides a rapid method for quantifying recombination events within intact tissues, and the frequency of recombinant cells can be evaluated by flow cytometry. A comparison among 11 tissues shows that the frequency of recombinant cells varies by more than two orders of magnitude among tissues, wherein HR in the brain is the lowest. Additionally, de novo recombination events accumulate with age in the colon, showing that this mouse model can be used to study the impact of chronic exposures on genomic stability. Exposure to N-methyl-N-nitrosourea, an alkylating agent similar to the cancer chemotherapeutic temozolomide, shows that the colon, liver and pancreas are susceptible to DNA damage-induced HR. Finally, histological analysis of the underlying cell types reveals that pancreatic acinar cells and liver hepatocytes undergo HR and also that HR can be specifically detected in colonic somatic stem cells. Taken together, the RaDR-GFP mouse model provides new understanding of how tissue and age impact susceptibility to HR, and enables future studies of genetic, environmental and physiological factors that modulate HR in mammals.  相似文献   
94.
Streptococcus pneumoniae is an important pathogen with significant morbidity and mortality rates worldwide, especially among children <5 years. Healthy carriers are the most important sources of pneumococcal infections, and the nasopharyngeal colonisation is the most prevalent among children attending communities such as day-care centres (DCCs). The conjugate pneumococcal vaccines (PCVs) were shown to have an impact on the colonisation, and so play an important role in inhibiting infections. In this study we compared the nasal carriage of healthy children attending DCCs in Szeged, Hungary in 2003/2004, when nobody was vaccinated, and in 2010, when already 1/5 of the children received PCV-7. Significant differences were observed in the serotype distribution, representing a marked shift from the previously widespread vaccine-types (mostly 6A or 14) to others (11A and 23F). The new serotypes showed higher antibiotic susceptibility. The bacterium exchange between children was clear from the pulsed-field gel electrophoresis (PFGE) patterns, and the circulation of certain international clones plays also a role in these dynamic changes.  相似文献   
95.
Cellular systems are generally robust against fluctuations of intracellular parameters such as gene expression level. However, little is known about expression limits of genes required to halt cellular systems. In this study, using the fission yeast Schizosaccharomyces pombe, we developed a genetic ‘tug‐of‐war’ (gTOW) method to assess the overexpression limit of certain genes. Using gTOW, we determined copy number limits for 31 cell‐cycle regulators; the limits varied from 1 to >100. Comparison with orthologs of the budding yeast Saccharomyces cerevisiae suggested the presence of a conserved fragile core in the eukaryotic cell cycle. Robustness profiles of networks regulating cytokinesis in both yeasts (septation‐initiation network (SIN) and mitotic exit network (MEN)) were quite different, probably reflecting differences in their physiologic functions. Fragility in the regulation of GTPase spg1 was due to dosage imbalance against GTPase‐activating protein (GAP) byr4. Using the gTOW data, we modified a mathematical model and successfully reproduced the robustness of the S. pombe cell cycle with the model.  相似文献   
96.
97.
Down feathers are the first feather types that appear in both the phylogenetic and the ontogenetic history of birds. Although it is widely acknowledged that the primary function of downy elements is insulation, little is known about the interspecific variability in the structural morphology of these feathers, and the environmental factors that have influenced their evolution. Here, we collected samples of down and afterfeathers from 156 bird species and measured key morphological characters that define the insulatory properties of the downy layer. We then tested if habitat and climatic conditions could explain the observed between-species variation in down feather structure. We show that habitat has a very strong and clearly defined effect on down feather morphology. Feather size, barbule length and nodus density all decreased from terrestrial toward aquatic birds, with riparian species exhibiting intermediate characters. Wintering climate, expressed as windchill (a combined measure of the ambient temperature and wind speed) had limited effects on down morphology, colder climate only being associated with higher nodus density in dorsal down feathers. Overall, an aquatic lifestyle selects for a denser plumulaceous layer, while the effect of harsh wintering conditions on downy structures appear limited. These results provide key evidence of adaptations to habitat at the level of the downy layer, both on the scale of macro- and micro-elements of the plumage. Moreover, they reveal characters of convergent evolution in the avian plumage and mammalian fur, that match the varying needs of insulation in terrestrial and aquatic modes of life.  相似文献   
98.
The evolution of resistance to a single antibiotic is frequently accompanied by increased resistance to multiple other antimicrobial agents. In sharp contrast, very little is known about the frequency and mechanisms underlying collateral sensitivity. In this case, genetic adaptation under antibiotic stress yields enhanced sensitivity to other antibiotics. Using large‐scale laboratory evolutionary experiments with Escherichia coli, we demonstrate that collateral sensitivity occurs frequently during the evolution of antibiotic resistance. Specifically, populations adapted to aminoglycosides have an especially low fitness in the presence of several other antibiotics. Whole‐genome sequencing of laboratory‐evolved strains revealed multiple mechanisms underlying aminoglycoside resistance, including a reduction in the proton‐motive force (PMF) across the inner membrane. We propose that as a side effect, these mutations diminish the activity of PMF‐dependent major efflux pumps (including the AcrAB transporter), leading to hypersensitivity to several other antibiotics. More generally, our work offers an insight into the mechanisms that drive the evolution of negative trade‐offs under antibiotic selection.  相似文献   
99.

Background and Aims

Sporadic colorectal cancer (CRC) development is a sequential process showing age-dependency, uncontrolled epithelial proliferation and decreased apoptosis. During juvenile growth cellular proliferation and apoptosis are well balanced, which may be perturbed upon aging. Our aim was to correlate proliferative and apoptotic activities in aging human colonic epithelium and colorectal cancer. We also tested the underlying molecular biology concerning the proliferation- and apoptosis-regulating gene expression alterations.

Materials and Methods

Colorectal biopsies from healthy children (n1 = 14), healthy adults (n2 = 10), adult adenomas (n3 = 10) and CRCs (n4 = 10) in adults were tested for Ki-67 immunohistochemistry and TUNEL apoptosis assay. Mitosis- and apoptosis-related gene expression was also studied in healthy children (n1 = 6), adult (n2 = 41) samples and in CRC (n3 = 34) in HGU133plus2.0 microarray platform. Measured alterations were confirmed with RT-PCR both on dependent and independent sample sets (n1 = 6, n2 = 6, n3 = 6).

Results

Mitotic index (MI) was significantly higher (p<0.05) in intact juvenile (MI = 0.33±0.06) and CRC samples (MI = 0.42±0.10) compared to healthy adult samples (MI = 0.15±0.06). In contrast, apoptotic index (AI) was decreased in children (0.13±0.06) and significantly lower in cancer (0.06±0.03) compared to healthy adult samples (0.17±0.05). Eight proliferation- (e.g. MKI67, CCNE1) and 11 apoptosis-associated genes (e.g. TNFSF10, IFI6) had altered mRNA expression both in the course of normal aging and carcinogenesis, mainly inducing proliferation and reducing apoptosis compared to healthy adults. Eight proliferation-associated genes including CCND1, CDK1, CDK6 and 26 apoptosis-regulating genes (e.g. SOCS3) were differently expressed between juvenile and cancer groups mostly supporting the pronounced cell growth in CRC.

Conclusion

Colorectal samples from children and CRC patients can be characterized by similarly increased proliferative and decreased apoptotic activities compared to healthy colonic samples from adults. Therefore, cell kinetic alterations during colorectal cancer development show uncontrolled rejuvenescence as opposed to the controlled cell growth in juvenile colonic epithelium.  相似文献   
100.
The preceding contribution by Toke et al. has studied the structure of the cationic antimicrobial peptide maximin-4 in detergent micelles and in organic solvent, revealing a different kink angle and side-chain interactions in the two different environments. Here, we have examined the same peptide in lipid bilayers using oriented circular dichroism (OCD) and solid-state 15N nuclear magnetic resonance (NMR) in aligned samples. OCD showed that maximin-4 is helical and adopts an oblique alignment in the membrane, and lacks the characteristic realignment response that is often observed for amphipathic α-helical peptides at a peptide:lipid ratio between 1:100 and 1:20. Solid-state 15N-NMR experiments suggest that maximin-4 also remains unaffected by lipid charge and temperature. Analyzing 15N labels in positions Ala12, Ala13, and Leu14, an oblique tilt angle of the N-terminal helix of ~130° relative to the membrane normal was found, in good agreement with the amphiphilic profile of this segment. An additional constraint at Ala22 in the C-terminal segment is found to be compatible with a continuous α-helix, but unfavorable side-chain interactions make this solution unlikely. Instead, a kink at Gly16 seems fully compatible with all known constraints and with the biophysical expectations in the membrane-bound state, given the liquid-state NMR structures. It thus seems that the flexible kink in maximin-4 allows the two helical segments to adjust to the local environment. The irregular amphiphilic profile and the resulting versatility in shape might explain why maximin-4 lacks the realignment response that has been characteristically observed for many related frog peptides forming straight amphipathic α-helices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号