首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   10篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   5篇
  2019年   3篇
  2018年   8篇
  2017年   5篇
  2016年   6篇
  2015年   9篇
  2014年   7篇
  2013年   16篇
  2012年   16篇
  2011年   10篇
  2010年   4篇
  2009年   8篇
  2008年   2篇
  2007年   6篇
  2006年   4篇
  2005年   6篇
  2004年   2篇
  2003年   2篇
  2002年   6篇
  2001年   6篇
  1998年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   3篇
  1985年   1篇
  1981年   1篇
排序方式: 共有155条查询结果,搜索用时 0 毫秒
41.
The Labridae is one of the most structurally and functionally diversified fish families on coral and rocky reefs around the world, providing a compelling system for examination of evolutionary patterns of functional change. Labrid fishes have evolved a diverse array of skull forms for feeding on prey ranging from molluscs, crustaceans, plankton, detritus, algae, coral and other fishes. The species richness and diversity of feeding ecology in the Labridae make this group a marine analogue to the cichlid fishes. Despite the importance of labrids to coastal reef ecology, we lack evolutionary analysis of feeding biomechanics among labrids. Here, we combine a molecular phylogeny of the Labridae with the biomechanics of skull function to reveal a broad pattern of repeated convergence in labrid feeding systems. Mechanically fast jaw systems have evolved independently at least 14 times from ancestors with forceful jaws. A repeated phylogenetic pattern of functional divergence in local regions of the labrid tree produces an emergent family-wide pattern of global convergence in jaw function. Divergence of close relatives, convergence among higher clades and several unusual 'breakthroughs' in skull function characterize the evolution of functional complexity in one of the most diverse groups of reef fishes.  相似文献   
42.
Morphology can contain valuable information about the ecological performance of reef fishes, but it has rarely been used in combination with social traits. Social behavior is known to influence the ecological role of fishes; however, the ecological basis for pairing in reef fishes is not well understood. Field observations of 2,753 individuals, in 47 species in six families of biting reef fishes (Acanthuridae, Chaetodontidae, Kyphosidae, Labridae, Pomacanthidae, Siganidae), were used in combination with six morphological measurements, to examine the morphology of fishes in different social systems. A principal components analysis of morphological traits segregated species with high proportions of pairing individuals from non-pairing species along principal component 1, explaining 40.8 % of the variation. Pairing species were characterized by large eyes, concave foreheads, pointed snouts, deep bodies, and small maximum sizes. There was a significant positive relationship between these morphological traits (i.e., scores on PC1) and the prevalence of pairing within the Chaetodontidae (r 2 = 0.59; P = 0.026), Siganidae (r 2 = 0.72; P = 0.004), and Acanthuridae (r 2 = 0.82; P < 0.001). This was consistent when traits were corrected for phylogenetic effects. No pattern was evident in the scarine Labridae (r 2 = 0.15; P = 0.17). The morphological characteristics found among pairing species suggest that pairing species share common ecological traits, including foraging for small prey items in micro-topographically complex environments such as reef crevices. These ecological traits may have played a role in the evolution of pairing behavior and subsequently led to the development of reproductive patterns based on monogamy.  相似文献   
43.
Herbivorous fishes are a critical functional group on coral reefs, and there is a clear need to understand the role and relative importance of individual species in reef processes. While numerous studies have quantified the roles of parrotfishes and surgeonfishes on coral reefs, the rabbitfishes (f. Siganidae) have been largely overlooked. Consequently, they are typically viewed as a uniform group of grazing or browsing fishes. Here, we quantify the diet and distribution of rabbitfish assemblages on six reefs spanning the continental shelf in the northern Great Barrier Reef. Our results revealed marked variation in the diet and distribution of rabbitfish species. Analysis of stomach contents identified four distinct groups: browsers of leathery brown macroalgae (Siganus canaliculatus, S. javus), croppers of red and green macroalgae (S. argenteus, S. corallinus, S. doliatus, S. spinus) and mixed feeders of diverse algal material, cyanobacteria, detritus and sediment (S. lineatus, S. punctatissimus, S. punctatus, S. vulpinus). Surprisingly, the diet of the fourth group (S. puellus) contained very little algal material (22.5 %) and was instead dominated by sponges (69.1 %). Together with this variation in diet, the distribution of rabbitfishes displayed clear cross-shelf variation. Biomass was greatest on inner-shelf reefs (112.7 ± 18.2 kg.ha?1), decreasing markedly on mid- (37.8 ± 4.6 kg.ha?1) and outer-shelf reefs (9.7 ± 2.2 kg.ha?1). This pattern was largely driven by the browsing S. canaliculatus that accounted for 50 % of the biomass on inner-shelf reefs, but was absent in mid- and outer-shelf reefs. Mixed feeders, although primarily restricted to the reef slope and back reef habitats, also decreased in abundance and biomass from inshore to offshore, while algal cropping taxa were the dominant group on mid-shelf reefs. These results clearly demonstrate the extent to which diet and distribution vary within the Siganidae and emphasise the importance of examining function on a species-by-species basis.  相似文献   
44.
In the marine realm, the tropics host an extraordinary diversity of taxa but the drivers underlying the global distribution of marine organisms are still under scrutiny and we still lack an accurate global predictive model. Using a spatial database for 6336 tropical reef fishes, we attempted to predict species richness according to geometric, biogeographical and environmental explanatory variables. In particular, we aimed to evaluate and disentangle the predictive performances of temperature, habitat area, connectivity, mid‐domain effect and biogeographical region on reef fish species richness. We used boosted regression trees, a flexible machine‐learning technique, to build our predictive model and structural equation modeling to test for potential ‘mediation effects’ among predictors. Our model proved to be accurate, explaining 80% of the total deviance in fish richness using a cross‐validated procedure. Coral reef area and biogeographical region were the primary predictors of reef fish species richness, followed by coast length, connectivity, mid‐domain effect and sea surface temperature, with interactions between the region and other predictors. Important indirect effects of water temperature on reef fish richness, mediated by coral reef area, were also identified. The relationship between environmental predictors and species richness varied markedly among biogeographical regions. Our analysis revealed that a few easily accessible variables can accurately predict reef fish species richness. They also highlight concerns regarding ongoing environmental declines, with region‐specific responses to variation in environmental conditions predicting a variable response to anthropogenic impacts.  相似文献   
45.
Coral Reefs - Coral reef ecosystems are at the forefront of biodiversity loss and climate change-mediated transformations. This is expected to have profound consequences for the functioning of...  相似文献   
46.
While many coral reef fishes utilise substratum refuges, the direct influence of water flow and swimming ability on such refuging patterns is yet to be established. This study examined the swimming ability and refuging behaviour of a labrid (Halichoeres margaritaceus) and a pomacentrid (Pomacentrus chrysurus) that inhabit high flow, wave-swept coral reef flats. Field observations of refuging patterns were combined with experimental evaluations in a flow tank using a replica of a substratum hole frequently used by these species. Under a range of flow speeds commonly found on the reef flat (0–60 cm s−1), flow within the substratum refuge was reduced to speeds of 0–12 cm s−1, representing a 75–100% flow reduction. Swimming ability of each species was then tested at 60 cm s−1 with and without access to this flow refuge. Both species were able to maintain activity within the 60 cm s−1 flow for considerably longer when provided with a refuge, with increases from approximately 39 min to 36 h for H. margaritaceus and 8 min to 88 h for P. chrysurus. Despite H. margaritaceus having the strongest swimming ability without access to a refuge, P. chrysurus was able to maintain swimming activity more than twice as long as H. margaritaceus when provided with a refuge. These increases in activity are probably due to energetic savings, with this type of refuge providing an estimated 95% energy saving over swimming directly into a unidirectional flow of 60 cm s−1. These results highlight the major advantages provided by refuging behaviour and emphasise the importance of habitat refuges in shaping patterns of habitat use in reef fishes.  相似文献   
47.
Direct evaluation of macroalgal removal by herbivorous coral reef fishes   总被引:5,自引:5,他引:0  
Few studies have examined the relative functional impacts of individual herbivorous fish species on coral reef ecosystem processes in the Indo-Pacific. This study assessed the potential grazing impact of individual species within an inshore herbivorous reef fish assemblage on the central Great Barrier Reef (GBR), by determining which fish species were able to remove particular macroalgal species. Transplanted multiple-choice algal assays and remote stationary underwater digital video cameras were used to quantify the impact of local herbivorous reef fish species on 12 species of macroalgae. Macroalgal removal by the fishes was rapid. Within 3 h of exposure to herbivorous reef fishes there was significant evidence of intense grazing. After 12 h of exposure, 10 of the 12 macroalgal species had decreased to less than 15% of their original mass. Chlorodesmis fastigiata (Chlorophyta) and Galaxaura sp. (Rhodophyta) showed significantly less susceptibility to herbivorous reef fish grazing than all other macroalgae, even after 24 h exposure. Six herbivorous and/or nominally herbivorous reef fish species were identified as the dominant grazers of macroalgae: Siganus doliatus, Siganus canaliculatus, Chlorurus microrhinos, Hipposcarus longiceps, Scarus rivulatus and Pomacanthus sexstriatus. The siganid S. doliatus fed heavily on Hypnea sp., while S. canaliculatus fed intensively on Sargassum sp. Variation in macroalgal susceptibility was not clearly correlated with morphological and/or chemical defenses that have been previously suggested as deterrents against herbivory. Nevertheless, the results stress the potential importance of individual herbivorous reef fish species in removing macroalgae from coral reefs.  相似文献   
48.
Signal divergence is an important process underpinning the diversification of lineages. Research has shown that signal divergence is greatest in species pairs that possess high geographic range overlap. However, the influence of range‐size differences within pairs is less understood. We investigated how these factors have shaped signal divergence within brightly coloured coral reef butterflyfishes (genus: Chaetodon). Using a novel digital imaging methodology, we quantified both colouration and pattern using 250 000 sample points on each fish image. Surprisingly, evolutionary age did not affect colour pattern dissimilarity between species pairs, with average differences arising in just 300 000 years. However, the effect of range overlap and range symmetry was significant. Species‐pair colour patterns become more different with increasing overlap, but only when ranges are similar in size. When ranges differ markedly in area, species‐pair colour patterns become more similar with increasing overlap. This suggests that species with small ranges may maintain non‐colour‐based species boundaries.  相似文献   
49.

Small fishes suffer high mortality rates on coral reefs, primarily due to predation. Although studies have identified the predators of early post-settlement fishes, the predators of small cryptobenthic fishes remain largely unknown. We therefore used a series of mesocosm experiments with natural habitat and cryptobenthic fish communities to identify the impacts of a range of small potential predators, including several invertebrates, on prey fish populations. While there was high variability in predation rates, many members of the cryptobenthic fish community act as facultative cryptopredators, being prey when small and piscivores when larger. Surprisingly, we also found that smashing mantis shrimps may be important fish predators. Our results highlight the diversity of the predatory community on coral reefs and identify previously unknown trophic links in these complex ecosystems.

  相似文献   
50.
Coral reefs are renowned for their spectacular biodiversity and the close links between fishes and corals. Despite extensive fossil records and common biogeographic histories, the evolution of these two key groups has rarely been considered together. We therefore examine recent advances in molecular phylogenetics and palaeoecology, and place the evolution of fishes and corals in a functional context. In critically reviewing the available fossil and phylogenetic evidence, we reveal a marked congruence in the evolution of the two groups. Despite one group consisting of swimming vertebrates and the other colonial symbiotic invertebrates, fishes and corals have remarkably similar evolutionary histories. In the Paleocene and Eocene [66–34 million years ago (Ma)] most modern fish and coral families were present, and both were represented by a wide range of functional morphotypes. However, there is little evidence of diversification at this time. By contrast, in the Oligocene and Miocene (34–5.3 Ma), both groups exhibited rapid lineage diversification. There is also evidence of increasing reef area, occupation of new habitats, increasing coral cover, and potentially, increasing fish abundance. Functionally, the Oligocene–Miocene is marked by the appearance of new fish and coral taxa associated with high‐turnover fast‐growth ecosystems and the colonization of reef flats. It is in this period that the functional characteristics of modern coral reefs were established. Most species, however, only arose in the last 5.3 million years (Myr; Plio–Pleistocene), with the average age of fish species being 5.3 Myr, and corals just 1.9 Myr. While these species are genetically distinct, phenotypic differences are often limited to variation in colour or minor morphological features. This suggests that the rapid increase in biodiversity during the last 5.3 Myr was not matched by changes in ecosystem function. For reef fishes, colour appears to be central to recent diversification. However, the presence of pigment patterns in the Eocene suggests that colour may not have driven recent diversification. Furthermore, the lack of functional changes in fishes or corals over the last 5 Myr raises questions over the role and importance of biodiversity in shaping the future of coral reefs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号