全文获取类型
收费全文 | 39篇 |
免费 | 54篇 |
国内免费 | 1篇 |
专业分类
94篇 |
出版年
2010年 | 1篇 |
2006年 | 4篇 |
2005年 | 2篇 |
2004年 | 3篇 |
2003年 | 5篇 |
2001年 | 5篇 |
2000年 | 4篇 |
1999年 | 5篇 |
1998年 | 2篇 |
1995年 | 4篇 |
1994年 | 4篇 |
1992年 | 2篇 |
1991年 | 2篇 |
1990年 | 4篇 |
1989年 | 2篇 |
1988年 | 4篇 |
1987年 | 8篇 |
1986年 | 3篇 |
1985年 | 1篇 |
1984年 | 3篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1978年 | 1篇 |
1976年 | 3篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1973年 | 3篇 |
1972年 | 4篇 |
1971年 | 2篇 |
1970年 | 1篇 |
1969年 | 2篇 |
1966年 | 4篇 |
排序方式: 共有94条查询结果,搜索用时 15 毫秒
81.
82.
Hydroxycinnamates, aromatic compounds that play diverse roles in plants, are dissimilated by enzymes encoded by the hca genes in the nutritionally versatile, naturally transformable bacterium Acinetobacter sp. strain ADP1. A key step in the hca-encoded pathway is activation of the natural substrates caffeate, p-coumarate, and ferulate by an acyl:coenzyme A (acyl:CoA) ligase encoded by hcaC. As described in this paper, Acinetobacter cells with a knockout of the next enzyme in the pathway, hydroxycinnamoyl-CoA hydratase/lyase (HcaA), are extremely sensitive to the presence of the three natural hydroxycinnamate substrates; Escherichia coli cells carrying a subclone with the hcaC gene are hydroxycinnamate sensitive as well. When the hcaA mutation was combined with a mutation in the repressor HcaR, exposure of the doubly mutated Acinetobacter cells to caffeate, p-coumarate, or ferulate at 10(-6) M totally inhibited the growth of cells. The toxicity of p-coumarate and ferulate to a DeltahcaA strain was found to be a bacteriostatic effect. Although not toxic to wild-type cells initially, the diphenolic caffeate was itself converted to a toxin over time in the absence of cells; the converted toxin was bactericidal. In an Acinetobacter strain blocked in hcaA, a secondary mutation in the ligase (HcaC) suppresses the toxic effect. Analysis of suppression due to the mutation of hcaC led to the development of a positive-selection strategy that targets mutations blocking HcaC. An hcaC mutation from one isolate was characterized and was found to result in the substitution of an amino acid that is conserved in a functionally characterized homolog of HcaC. 相似文献
83.
84.
85.
86.
87.
E J Hughes M K Shapiro J E Houghton L N Ornston 《Journal of general microbiology》1988,134(11):2877-2887
Beta-Ketoadipate elicits expression of five structural pca genes encoding enzymes that catalyse consecutive reactions in the utilization of protocatechuate by Pseudomonas putida. Three derivatives of P. putida PRS2000 were obtained, each carrying a single copy of Tn5 DNA inserted into a separate region of the genome and preventing expression of different sets of pca genes. Selection of Tn5 in or near the pca genes in these derivatives was used to clone four structural pca genes and to enable their expression as inserts in pUC19 carried in Escherichia coli. Three of the genes were clustered as components of an apparent operon in the order pcaBDC. This observation indicates that rearrangement of the closely linked genes accompanied divergence of their evolutionary homologues, which are known to appear in the order pcaDBC in the Acinetobacter calcoaceticus pcaEFDBCA gene cluster. Additional evidence for genetic reorganization during evolutionary divergence emerged from the demonstration that the P. putida pcaE gene lies more than 15 kilobase pairs (kbp) away from the pcaBDC operon. An additional P. putida gene, pcaR, was shown to be required for expression of the pca structural genes in response to beta-ketoadipate. The regulatory pcaR gene is located about 15 kbp upstream from the pcaBDC operon. 相似文献
88.
89.
The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. IV. Regulation 总被引:57,自引:0,他引:57
L N Ornston 《The Journal of biological chemistry》1966,241(16):3800-3810
90.
Benzoate and muconate, structurally dissimilar metabolites, induce expression of catA in Acinetobacter calcoaceticus. 总被引:6,自引:6,他引:0 下载免费PDF全文
Biosynthetic regulation of catA, the gene encoding catechol 1,2-dioxygenase (EC 1.13.1.1), was studied in an Acinetobacter calcoaceticus mutant strain unable to metabolize benzoate. Benzoate and muconate independently induced the enzyme. In glucose-grown cells, benzoate yielded higher enzyme levels than did muconate, whereas muconate was the more effective inducer in succinate-grown cells. 相似文献