首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   20篇
  2023年   1篇
  2021年   6篇
  2020年   6篇
  2019年   5篇
  2018年   2篇
  2017年   2篇
  2016年   6篇
  2015年   8篇
  2014年   12篇
  2013年   13篇
  2012年   24篇
  2011年   18篇
  2010年   15篇
  2009年   11篇
  2008年   20篇
  2007年   23篇
  2006年   14篇
  2005年   15篇
  2004年   22篇
  2003年   16篇
  2002年   16篇
  2001年   3篇
  2000年   1篇
  1999年   6篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1980年   4篇
  1975年   1篇
  1969年   1篇
排序方式: 共有299条查询结果,搜索用时 15 毫秒
231.
We studied the expression of FREK (fibroblast growth factor receptor-like embryonic kinase), a new receptor recently cloned from quail embryo, during the differentiation of skeletal muscle satellite cells and epiphyseal growth-plate chondrocytes. Although FREK mRNA was expressed in both cell types, satellite cells expressed higher levels of this mRNA than chondrocytes. FREK gene expression was found to be modulated by b-FGF in a biphasic manner: low concentrations increased expression, whereas high concentrations attenuated it. In both cell cultures, the levels of FREK mRNA declined during terminal differentiation. Moreover, retinoic acid (RA), which induces skeletal muscle satellite cells to differentiate, also caused a reduction in FREK gene expression in these cells. Induction of chondrocyte differentiation with ascorbic acid was monitored by a decrease in collagen type II gene expression and an increase in alkaline phosphatase activity. Satellite cell differentiation was marked by morphological changes as well as by increased sarcomeric myogenin content and creatine kinase activity and changes in the expression of the regulatory muscle-specific genes, MyoD and myogenin. DNA synthesis in both cell types was stimulated by b-FGF. However, in satellite cells, the response was bell-shaped, peaking at 1 ng/ml b-FGF, whereas in chondrocytes, higher levels of b-FGF were needed. b-FGF-dependent DNA synthesis in satellite cells was decreased by RA at concentrations over 10-7M . The observed correlation between the level of FREK gene expression and various stages of differentiation, its modulation by b-FGF and RA, as well as the correlation between FREK gene expression and the physiological response to b-FGF, suggest that this specific FGF receptor plays an important role in muscle and cartilage cell differentiation.  相似文献   
232.
Divergent architecture of shoot models in flowering plants reflects the pattern of production of vegetative and reproductive organs from the apical meristem. The SELF-PRUNING (SP) gene of tomato is a member of a novel CETS family of regulatory genes (CEN, TFL1, and FT) that controls this process. We have identified and describe here several proteins that interact with SP (SIPs) and with its homologs from other species: a NIMA-like kinase (SPAK), a bZIP factor, a novel 10-kD protein, and 14-3-3 isoforms. SPAK, by analogy with Raf1, has two potential binding sites for 14-3-3 proteins, one of which is shared with SP. Surprisingly, overexpression of 14-3-3 proteins partially ameliorates the effect of the sp mutation. Analysis of the binding potential of chosen mutant SP variants, in relation to conformational features known to be conserved in this new family of regulatory proteins, suggests that associations with other proteins are required for the biological function of SP and that ligand binding and protein-protein association domains of SP may be separated. We suggest that CETS genes encode a family of modulator proteins with the potential to interact with a variety of signaling proteins in a manner analogous to that of 14-3-3 proteins.  相似文献   
233.
234.
235.
Neurologic disorders often disproportionately affect specific brain regions, and different apoptotic mechanisms may contribute to white matter pathology in leukodystrophies or gray matter pathology in poliodystrophies. We previously showed that neural progenitors that generate cerebellar gray matter depend on the anti-apoptotic protein BCL-xL. Conditional deletion of Bcl-xL in these progenitors produces spontaneous apoptosis and cerebellar hypoplasia, while similar conditional deletion of Mcl-1 produces no phenotype. Here we show that, in contrast, postnatal oligodendrocytes depend on MCL-1. We found that brain-wide Mcl-1 deletion caused apoptosis specifically in mature oligodendrocytes while sparing astrocytes and oligodendrocyte precursors, resulting in impaired myelination and progressive white matter degeneration. Disabling apoptosis through co-deletion of Bax or Bak rescued white matter degeneration, implicating the intrinsic apoptotic pathway in Mcl-1-dependence. Bax and Bak co-deletions rescued different aspects of the Mcl-1-deleted phenotype, demonstrating their discrete roles in white matter stability. MCL-1 protein abundance was reduced in eif2b5-mutant mouse model of the leukodystrophy vanishing white matter disease (VWMD), suggesting the potential for MCL-1 deficiency to contribute to clinical neurologic disease. Our data show that oligodendrocytes require MCL-1 to suppress apoptosis, implicate MCL-1 deficiency in white matter pathology, and suggest apoptosis inhibition as a leukodystrophy therapy.Subject terms: Cell death in the nervous system, Neurodegeneration, Oligodendrocyte  相似文献   
236.
237.
Before the first zygotic division, the nuclear envelopes of the maternal and paternal pronuclei disassemble, allowing both sets of chromosomes to be incorporated into a single nucleus in daughter cells after mitosis. We found that in Caenorhabditis elegans, partial inactivation of the polo-like kinase PLK-1 causes the formation of two nuclei, containing either the maternal or paternal chromosomes, in each daughter cell. These two nuclei gave rise to paired nuclei in all subsequent cell divisions. The paired-nuclei phenotype was caused by a defect in forming a gap in the nuclear envelopes at the interface between the two pronuclei during the first mitotic division. This was accompanied by defects in chromosome congression and alignment of the maternal and paternal metaphase plates relative to each other. Perturbing chromosome congression by other means also resulted in failure to disassemble the nuclear envelope between the two pronuclei. Our data further show that PLK-1 is needed for nuclear envelope breakdown during early embryogenesis. We propose that during the first zygotic division, PLK-1–dependent chromosome congression and metaphase plate alignment are necessary for the disassembly of the nuclear envelope between the two pronuclei, ultimately allowing intermingling of the maternal and paternal chromosomes.  相似文献   
238.
239.
240.
Muscular dystrophies (MDs) include different inherited diseases that all result in progressive muscle degeneration, impaired locomotion and often premature death. The major focus of MD research has been on alleviating the primary genetic deficit - using gene therapy and myoblast-transfer approaches to promote expression of the deficient or mutated genes in the muscle fibers. Although promising, these approaches have not yet entered into clinical practice and unfortunately for MD patients, there is currently no cure. Thus, the development of complementary and supportive therapies that slow disease progression and improve patients' quality of life is critically important. The main features of MDs are sarcolemmal instability and increased myofiber vulnerability to mechanical stress, resulting in myofiber degeneration. Fibrosis, with progressive replacement of muscle tissue, is a prominent feature in some MDs, preventing complete regeneration and hampering muscle functions. TGFβ is the leading candidate for activating fibroblasts and eliciting overproduction of extracellular matrix (ECM) proteins. Halofuginone, an inhibitor of Smad3 phosphorylation downstream of TGFβ signaling, inhibits the activation of fibroblasts and their ability to synthesize ECM, regardless of their origin or location. In animal models of MDs with prominent muscle fibrosis, halofuginone treatment has resulted in both prevention of collagen production in young animals and resolution of established fibrosis in older ones: the reduction in muscle collagen content was associated with improved muscle histopathology and major improvements in muscle function. Recently, these halofuginone-dependent improvements were also observed in MD with minor fibrosis involvement, probably due to a direct effect of halofuginone on muscle cells, resulting in myotube fusion that is dependent on Akt and MAPK pathway activation. In summary, halofuginone improves muscle histopathology and muscle functions in various MDs, via inhibition of muscle fibrosis on the one hand, and increased myotube fusion on the other.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号