首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   20篇
  2023年   1篇
  2021年   6篇
  2020年   6篇
  2019年   5篇
  2018年   2篇
  2017年   2篇
  2016年   6篇
  2015年   8篇
  2014年   12篇
  2013年   13篇
  2012年   24篇
  2011年   18篇
  2010年   15篇
  2009年   11篇
  2008年   20篇
  2007年   23篇
  2006年   14篇
  2005年   15篇
  2004年   22篇
  2003年   16篇
  2002年   16篇
  2001年   3篇
  2000年   1篇
  1999年   6篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1980年   4篇
  1975年   1篇
  1969年   1篇
排序方式: 共有299条查询结果,搜索用时 31 毫秒
131.
132.
133.
Cell signaling systems transmit information by post-translationally modifying signaling proteins, often via phosphorylation. While thousands of sites of phosphorylation have been identified in proteomic studies, the vast majority of sites have no known function. Assigning functional roles to the catalog of uncharacterized phosphorylation sites is a key research challenge. Here we present a general approach to address this challenge and apply it to a prototypical signaling pathway, the pheromone response pathway in Saccharomyces cerevisiae. The pheromone pathway includes a mitogen activated protein kinase (MAPK) cascade activated by a G-protein coupled receptor (GPCR). We used published mass spectrometry-based proteomics data to identify putative sites of phosphorylation on pheromone pathway components, and we used evolutionary conservation to assign priority to a list of candidate MAPK regulatory sites. We made targeted alterations in those sites, and measured the effects of the mutations on pheromone pathway output in single cells. Our work identified six new sites that quantitatively tuned system output. We developed simple computational models to find system architectures that recapitulated the quantitative phenotypes of the mutants. Our results identify a number of putative phosphorylation events that contribute to adjust the input-output relationship of this model eukaryotic signaling system. We believe this combined approach constitutes a general means not only to reveal modification sites required to turn a pathway on and off, but also those required for more subtle quantitative effects that tune pathway output. Our results suggest that relatively small quantitative influences from individual phosphorylation events endow signaling systems with plasticity that evolution may exploit to quantitatively tailor signaling outcomes.  相似文献   
134.
135.
136.
Chronic obstructive pulmonary disease (COPD) is a complex disease, the pathogenesis of which remains incompletely understood. Colonization with Pneumocystis jirovecii may play a role in COPD pathogenesis; however, the mechanisms by which such colonization contributes to COPD are unknown. The objective of this study was to determine lung gene expression profiles associated with Pneumocystis colonization in patients with COPD to identify potential key pathways involved in disease pathogenesis. Using COPD lung tissue samples made available through the Lung Tissue Research Consortium (LTRC), Pneumocystis colonization status was determined by nested PCR. Microarray gene expression profiles were performed for each sample and the profiles of colonized and non‐colonized samples compared. Overall, 18 participants (8.5%) were Pneumocystis‐colonized. Pneumocystis colonization was associated with fold increase in expression of four closely related genes: INF‐γ and the three chemokine ligands CXCL9, CXCL10, and CXCL11. These ligands are chemoattractants for the common cognate receptor CXCR3, which is predominantly expressed on activated Th1 T‐lymphocytes. Although these ligand–receptor pairs have previously been implicated in COPD pathogenesis, few initiators of ligand expression and subsequent lymphocyte trafficking have been identified: our findings implicate Pneumocystis as a potential trigger. The finding of upregulation of these inflammatory genes in the setting of Pneumocystis colonization sheds light on infectious‐immune relationships in COPD.  相似文献   
137.
138.
139.
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by severe, progressive fibrosis. Roles for inflammation and oxidative stress have recently been demonstrated, but despite advances in understanding the pathogenesis, there are still no effective therapies for IPF. This study investigates how extracellular superoxide dismutase (EC-SOD), a syndecan-binding antioxidant enzyme, inhibits inflammation and lung fibrosis. We hypothesize that EC-SOD protects the lung from oxidant damage by preventing syndecan fragmentation/shedding. Wild-type or EC-SOD-null mice were exposed to an intratracheal instillation of asbestos or bleomycin. Western blot was used to detect syndecans in the bronchoalveolar lavage fluid and lung. Human lung samples (normal and IPF) were also analyzed. Immunohistochemistry for syndecan-1 and EC-SOD was performed on human and mouse lungs. In vitro, alveolar epithelial cells were exposed to oxidative stress and EC-SOD. Cell supernatants were analyzed for shed syndecan-1 by Western blot. Syndecan-1 ectodomain was assessed in wound healing and neutrophil chemotaxis. Increases in human syndecan-1 are detected in lung homogenates and lavage fluid of IPF lungs. Syndecan-1 is also significantly elevated in the lavage fluid of EC-SOD-null mice after asbestos and bleomycin exposure. On IHC, syndecan-1 staining increases within fibrotic areas of human and mouse lungs. In vitro, EC-SOD inhibits oxidant-induced loss of syndecan-1 from A549 cells. Shed and exogenous syndecan-1 ectodomain induce neutrophil chemotaxis, inhibit alveolar epithelial wound healing, and promote fibrogenesis. Oxidative shedding of syndecan-1 is an underlying cause of neutrophil chemotaxis and aberrant wound healing that may contribute to pulmonary fibrosis.Idiopathic pulmonary fibrosis (IPF)2 is an interstitial lung disease characterized by severe and progressive fibrosis. IPF patients have a mean survival of 3–5 years (1, 2) and no effective therapies (3, 4), other than orthotopic lung transplantation, have proven to improve survival. The pathogenesis of IPF is poorly understood; however, inflammation and oxidant/antioxidant imbalances in the lung are thought to play important roles (57). A better understanding of the molecular mechanisms involved in oxidative injury and fibrosis could lead to the development of novel therapeutic targets.Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme bound to heparan sulfate in the lung extracellular matrix (810), which can inhibit inflammation (11, 12) and prevent subsequent development of fibrosis (1316). Despite its beneficial role, the mechanisms through which EC-SOD protects the lung remain unknown.The extracellular matrix (ECM) is essential for tissue homeostasis and changes in the ECM microenvironment can be detrimental to cell function during inflammation and wound healing. Heparan sulfate proteoglycans (HSPG) contain a membrane-bound core protein and extracellular carbohydrate side chains. Syndecans are the most abundant HSPG in humans; there are 4 isoforms with variable cell expression (17, 18). Both syndecan-1 and -4 are expressed in the lung, with epithelial cell and ubiquitous expression, respectively (19). Syndecans are essential for ECM homeostasis by binding cytokines and growth factors, acting as co-receptors and soluble effectors. They also have potential roles in inflammation (18, 20, 21), fibrosis (22, 23), and wound healing (2426). Syndecans are shed under physiological and pathological conditions but the function of shed syndecans is poorly understood (22). Reactive oxygen species (ROS) are capable of fragmenting HSPG (27) and other ECM components. Notably, EC-SOD has been shown to prevent oxidative damage to many ECM components (23, 28, 29). Within the lung, EC-SOD binds to syndecan-1 on the cell surface via a heparin-binding domain (8, 30). Because of the known functions of syndecans and its close interaction with EC-SOD, syndecan-1 is a key target that may contribute to the anti-inflammatory and anti-fibrotic effects of EC-SOD in the lung and in the pulmonary fibrosis.This study was conducted to determine the role of EC-SOD in protecting the ECM from oxidative stress and to investigate our hypothesis that EC-SOD protects the lung from inflammation and fibrosis by inhibiting oxidant-induced shedding of syndecan-1. Our findings suggest that a loss of EC-SOD in the lung leaves syndecan-1 vulnerable to oxidative stress and that oxidatively shed syndecan-1 ectodomain induces neutrophil chemotaxis, impairs epithelial wound healing, and promotes fibrogenesis. The discovery that oxidative stress alters the distribution of syndecan-1 in the lung microenvironment is a novel finding in the context of pulmonary fibrosis. These findings advance the understanding of the pathogenesis of idiopathic pulmonary fibrosis and provide a potential new therapeutic target for intervention in IPF.  相似文献   
140.
Ischemia-reperfusion injury (I/R) is the main cause of primary graft nonfunction. Our aim was to evaluate the effect of excessive versus acute administration of erythropoietin (EPO) in attenuating the hepatic injury induced by I/R in mice. The effect of segmental (70%) hepatic ischemia was evaluated in a transgenic mouse line with constitutive overexpression of human EPO cDNA and in wild-type (WT) mice. Mice were randomly allocated to 5 main experimental groups: (i) WT-sham, (ii) WT ischemia, (iii) WT ischemia + recombinant human erythropoietin (rhEPO), (iv) transgenic-sham, and (v) transgenic ischemia. The EPO-pretreated mice showed a significant reduction in liver enzyme levels and intrahepatic caspase-3 activity and fewer apoptotic hepatocytes (p < 0.05 for all) compared with the WT untreated I/R group. EPO decreased c-Jun N-terminal kinase (JNK) phosphorylation and nuclear factor-κB (NF-κB) expression during I/R. In transgenic I/R livers, baseline histology showed diffused hepatic injury, and no significant beneficial effect was noted between the WT untreated and the transgenic I/R mice. In conclusion, acute pretreatment with EPO in WT mice attenuated in vivo I/R liver injury. However, in excessive EPO overexpression, the initial liver injury abolished the beneficial effect of EPO. These findings have important implications for the potential use of acute EPO in I/R injury during liver transplantation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号