首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   237篇
  免费   26篇
  263篇
  2023年   2篇
  2022年   5篇
  2021年   2篇
  2020年   4篇
  2019年   4篇
  2018年   8篇
  2017年   1篇
  2016年   5篇
  2015年   9篇
  2014年   11篇
  2013年   14篇
  2012年   16篇
  2011年   20篇
  2010年   18篇
  2009年   12篇
  2008年   21篇
  2007年   16篇
  2006年   12篇
  2005年   12篇
  2004年   12篇
  2003年   6篇
  2002年   8篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1995年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1985年   3篇
  1984年   3篇
  1982年   1篇
  1981年   2篇
  1980年   4篇
  1979年   4篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1965年   1篇
排序方式: 共有263条查询结果,搜索用时 0 毫秒
21.
Limitation of current techniques in identifying extra chromosomal segments arising de novo is illustrated by a putative case of a duplication of the long arm of chromosome 7. The propositus, demonstrating multiple congenital anomalies and severe mental retardation, had a large extra segment of chromatin on chromosome 7q that was absent in his parents. The banding pattern of this segment resembled that of the long arm of chromosomes 7, 8, or 9. Various procedures indicated that the additional material did not include the secondary constriction of 9q. The phenotype of the propositus did not fit well with that of trisomy 8.  相似文献   
22.
The rumen bacterium Ruminococcus flavefaciens produces a highly organized multienzyme cellulosome complex that plays a key role in the degradation of plant cell wall polysaccharides, notably cellulose. The R. flavefaciens cellulosomal system is anchored to the bacterial cell wall through a relatively small ScaE scaffoldin subunit, which bears a single type IIIe cohesin responsible for the attachment of two major dockerin-containing scaffoldin proteins, ScaB and the cellulose-binding protein CttA. Although ScaB recruits the catalytic machinery onto the complex, CttA mediates attachment of the bacterial substrate via its two putative carbohydrate-binding modules. In an effort to understand the structural basis for assembly and cell surface attachment of the cellulosome in R. flavefaciens, we determined the crystal structure of the high affinity complex (Kd = 20.83 nm) between the cohesin module of ScaE (CohE) and its cognate X-dockerin (XDoc) modular dyad from CttA at 1.97-Å resolution. The structure reveals an atypical calcium-binding loop containing a 13-residue insert. The results further pinpoint two charged specificity-related residues on the surface of the cohesin module that are responsible for specific versus promiscuous cross-strain binding of the dockerin module. In addition, a combined functional role for the three enigmatic dockerin inserts was established whereby these extraneous segments serve as structural buttresses that reinforce the stalklike conformation of the X-module, thus segregating its tethered complement of cellulosomal components from the cell surface. The novel structure of the RfCohE-XDoc complex sheds light on divergent dockerin structure and function and provides insight into the specificity features of the type IIIe cohesin-dockerin interaction.  相似文献   
23.
Currently available treatments for patients with medullary thyroid carcinoma (MTC) with residual or recurrent disease after primary surgery have low efficacy rates. In view of the possible role of estrogen in the development of thyroid neoplasia, we explored whether proliferation of the human MTC TT cell line, might be curbed by carboxy-daidzein-tBoc (cD-tBoc), a novel isoflavone derivative. Estrogen receptor (ER) α mRNA expression in TT cells was more abundant than ERβ, with a ratio of 48:1. Estradiol-17β (E2) increased DNA synthesis in a dose dependent manner. [(3)H]-thymidine incorporation was also stimulated by the ERβ agonist DPN and the ERα agonist PPT. cD-tBoc inhibited TT cell growth as assessed by thymidine incorporation, XTT assay, and microscopic analysis of culture wells. Creatine kinase specific activity, a marker of the modulatory effects of estrogen on cell energy metabolism, was likewise inhibited. The inhibitory effect of cD-tBoc on [(3)H]-thymidine incorporation could be blocked by the ERβ antagonist PTHPP but not by the ERα antagonist MPP, suggesting that the antiproliferative effect of cD-tBoc on these cells is mediated through ERβ. Furthermore, cD-tBoc potently increased apoptosis and cell necrosis. Co-incubation with the antiapoptotic agent Z-VAD-FMK reversed the growth inhibitory effect elicited by cD-tBoc. These results support the hypothesis that estrogens are involved in the proliferation of MTC. The potent anti-proliferative effects mediated by isoflavone derivatives in the human MTC cell line TT suggest and that this property may be utilized to design effective anti-neoplastic agents.  相似文献   
24.
Analysis of the three-dimensional structures of three closely related mesophilic, thermophilic, and hyperthermophilic alcohol dehydrogenases (ADHs) from the respective microorganisms Clostridium beijerinckii (CbADH), Entamoeba histolytica (EhADH1), and Thermoanaerobacter brockii (TbADH) suggested that a unique, strategically located proline residue (Pro100) might be crucial for maintaining the thermal stability of EhADH1. To determine whether proline substitution at this position in TbADH and CbADH would affect thermal stability, we used site-directed mutagenesis to replace the complementary residues in both enzymes with proline. The results showed that replacing Gln100 with proline significantly enhanced the thermal stability of the mesophilic ADH: DeltaT(1/2) (60 min) = + 8 degrees C (temperature of 50% inactivation after incubation for 60 min), DeltaT(1/2) (CD) = +11.5 degrees C (temperature at which 50% of the original CD signal at 218 nm is lost upon heating between 30 degrees and 98 degrees C). A His100 --> Pro substitution in the thermophilic TbADH had no effect on its thermostability. An analysis of the three-dimensional structure of the crystallized thermostable mutant Q100P-CbADH suggested that the proline residue at position 100 stabilized the enzyme by reinforcing hydrophobic interactions and by reducing the flexibility of a loop at this strategic region.  相似文献   
25.
Although de novo computational enzyme design has been shown to be feasible, the field is still in its infancy: the kinetic parameters of designed enzymes are still orders of magnitude lower than those of naturally occurring ones. Nonetheless, designed enzymes can be improved by directed evolution, as recently exemplified for the designed Kemp eliminase KE07. Random mutagenesis and screening resulted in variants with > 200-fold higher catalytic efficiency and provided insights about features missing in the designed enzyme. Here we describe the optimization of KE70, another designed Kemp eliminase. Amino acid substitutions predicted to improve catalysis in design calculations involving extensive backbone sampling were individually tested. Those proven beneficial were combinatorially incorporated into the originally designed KE70 along with random mutations, and the resulting libraries were screened for improved eliminase activity. Nine rounds of mutation and selection resulted in > 400-fold improvement in the catalytic efficiency of the original KE70 design, reflected in both higher kcat values and lower Km values, with the best variants exhibiting kcat/Km values of > 5 × 104 s− 1 M− 1. The optimized KE70 variants were characterized structurally and biochemically, providing insights into the origins of the improvements in catalysis. Three primary contributions were identified: first, the reshaping of the active-site cavity to achieve tighter substrate binding; second, the fine-tuning of electrostatics around the catalytic His-Asp dyad; and, third, the stabilization of the active-site dyad in a conformation optimal for catalysis.  相似文献   
26.
The steroidogenic acute regulatory (StAR) protein, which mediates cholesterol delivery to the inner mitochondrial membrane and the P450scc enzyme, has been shown to require a mitochondrial electrochemical gradient for its activity in vitro. To characterize the role of this gradient in cholesterol transfer, investigations were conducted in whole cells, utilizing the protonophore carbonyl cyanide m-chlorophenylhydrazone (m-CCCP) and the potassium ionophore valinomycin. These reagents, respectively, dissipate the mitochondrial electrochemical gradient and inner mitochondrial membrane potential. Both MA-10 Leydig tumor cell steroidogenesis and mitochondrial import of StAR were inhibited by m-CCCP or valinomycin at concentrations which had only minimal effects on P450scc activity. m-CCCP also inhibited import and processing of both StAR and the truncated StAR mutants, N-19 and C-28, in transfected COS-1 cells. Steroidogenesis induced by StAR and N-47, an active N-terminally truncated StAR mutant, was reduced in transfected COS-1 cells when treated with m-CCCP. This study shows that StAR action requires a membrane potential, which may reflect a functional requirement for import of StAR into the mitochondria, or more likely, an unidentified factor which is sensitive to ionophore treatment. Furthermore, the ability of N-47 to stimulate steroidogenesis in nonsteroidogenic HepG2 liver tumor cells, suggests that the mechanism by which StAR acts may be common to many cell types.  相似文献   
27.
Many lines of evidence suggest that oxidative stress resulting in reactive oxygen species (ROS) generation and inflammation play a pivotal role in the age-associated cognitive decline and neuronal loss in neurodegenerative diseases including Alzheimer's (AD), Parkinson's (PD) and Huntington's diseases. One cardinal chemical pathology observed in these disorders is the accumulation of iron at sites where the neurons die. The buildup of an iron gradient in conjunction with ROS (superoxide, hydroxyl radical and nitric oxide) are thought to constitute a major trigger in neuronal toxicity and demise in all these diseases. Thus, promising future treatment of neurodegenerative diseases and aging depends on availability of effective brain permeable, iron-chelatable/radical scavenger neuroprotective drugs that would prevent the progression of neurodegeneration. Tea flavonoids (catechins) have been reported to possess potent iron-chelating, radical-scavenging and anti-inflammatory activities and to protect neuronal death in a wide array of cellular and animal models of neurological diseases. Recent studies have indicated that in addition to the known antioxidant activity of catechins, other mechanisms such as modulation of signal transduction pathways, cell survival/death genes and mitochondrial function, contribute significantly to the induction of cell viability. This review will focus on the multifunctional properties of green tea and its major component (-)-epigallocatechin-3-gallate (EGCG) and their ability to induce neuroprotection and neurorescue in vitro and in vivo. In particular, their transitional metal (iron and copper) chelating property and inhibition of oxidative stress.  相似文献   
28.
Degeneration of the cerebrum, cerebellum, and retina in infancy is part of the clinical spectrum of lysosomal storage disorders, mitochondrial respiratory chain defects, carbohydrate glycosylation defects, and infantile neuroaxonal dystrophy. We studied eight individuals from two unrelated families who presented at 2-6 months of age with truncal hypotonia and athetosis, seizure disorder, and ophthalmologic abnormalities. Their course was characterized by failure to acquire developmental milestones and culminated in profound psychomotor retardation and progressive visual loss, including optic nerve and retinal atrophy. Despite their debilitating state, the disease was compatible with survival of up to 18 years. Laboratory investigations were normal, but the oxidation of glutamate by muscle mitochondria was slightly reduced. Serial brain MRI displayed progressive, prominent cerebellar atrophy accompanied by thinning of the corpus callosum, dysmyelination, and frontal and temporal cortical atrophy. Homozygosity mapping followed by whole-exome sequencing disclosed a Ser112Arg mutation in ACO2, encoding mitochondrial aconitase, a component of the Krebs cycle. Specific aconitase activity in the individuals' lymphoblasts was severely reduced. Under restrictive conditions, the mutant human ACO2 failed to complement a yeast ACO1 deletion strain, whereas the wild-type human ACO2 succeeded, indicating that this mutation is pathogenic. Thus, a defect in mitochondrial aconitase is associated with an infantile neurodegenerative disorder affecting mainly the cerebellum and retina. In the absence of noninvasive biomarkers, determination of the ACO2 sequence or of aconitase activity in lymphoblasts are warranted in similarly affected individuals, based on clinical and neuroradiologic grounds.  相似文献   
29.
The de novo design of protein-protein interfaces is a stringent test of our understanding of the principles underlying protein-protein interactions and would enable unique approaches to biological and medical challenges. Here we describe a motif-based method to computationally design protein-protein complexes with native-like interface composition and interaction density. Using this method we designed a pair of proteins, Prb and Pdar, that heterodimerize with a Kd of 130 nM, 1000-fold tighter than any previously designed de novo protein-protein complex. Directed evolution identified two point mutations that improve affinity to 180 pM. Crystal structures of an affinity-matured complex reveal binding is entirely through the designed interface residues. Surprisingly, in the in vitro evolved complex one of the partners is rotated 180° relative to the original design model, yet still maintains the central computationally designed hotspot interaction and preserves the character of many peripheral interactions. This work demonstrates that high-affinity protein interfaces can be created by designing complementary interaction surfaces on two noninteracting partners and underscores remaining challenges.  相似文献   
30.
The cellular and subcellular distribution of sterol carrier protein 2 (SCP2; nsL-TP) was reinvestigated in rat testicular cells by Western blotting and immunocytochemistry, using the affinity purified antibody against rat liver SCP2. Western blot analysis revealed high levels of the protein in the somatic cells of the testis, e.g., Leydig and Sertoli cells whereas it could not be detected in germ cells. This cellular localization of SCP2 was confirmed by Northern blotting. Immunocytochemical techniques revealed that in Leydig cells, immunoreactive proteins were concentrated in peroxisomes. Although SCP2 was also detected in Sertoli cells, a specific subcellular localization could not be shown. SCP2 was absent from germ cells. Analysis of subcellular fractions of Leydig cells showed that SCP2 is membrane bound without detectable amounts in the cytosolic fraction. These results are at variance with data published previously which suggested that in Leydig cells a substantial amount of SCP2 was present in the cytosol and that the distribution between membranes and cytosol was regulated by luteinizing hormone. The present data raise the question in what way SCP2 is involved in cholesterol transport between membranes in steroidogenic cells but also in non-steroidogenic cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号