首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   22篇
  国内免费   1篇
  2022年   2篇
  2021年   3篇
  2016年   4篇
  2015年   6篇
  2014年   6篇
  2013年   6篇
  2012年   7篇
  2011年   9篇
  2010年   5篇
  2009年   4篇
  2008年   6篇
  2007年   10篇
  2006年   7篇
  2005年   9篇
  2004年   6篇
  2003年   1篇
  2002年   6篇
  2001年   6篇
  2000年   7篇
  1999年   5篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1993年   4篇
  1992年   8篇
  1991年   12篇
  1990年   9篇
  1989年   12篇
  1988年   9篇
  1987年   8篇
  1986年   6篇
  1985年   4篇
  1984年   7篇
  1983年   6篇
  1982年   4篇
  1981年   4篇
  1980年   5篇
  1979年   8篇
  1978年   6篇
  1977年   2篇
  1976年   9篇
  1975年   9篇
  1974年   8篇
  1973年   5篇
  1972年   1篇
  1971年   3篇
  1970年   1篇
  1967年   1篇
排序方式: 共有279条查询结果,搜索用时 31 毫秒
101.
102.
Resistance to the proteasome inhibitor bortezomib is an emerging clinical problem whose mechanisms have not been fully elucidated. We considered the possibility that this could be associated with enhanced proteasome activity in part through the action of the proteasome maturation protein (POMP). Bortezomib-resistant myeloma models were used to examine the correlation between POMP expression and bortezomib sensitivity. POMP expression was then modulated using genetic and pharmacologic approaches to determine the effects on proteasome inhibitor sensitivity in cell lines and in vivo models. Resistant cell lines were found to overexpress POMP, and while its suppression in cell lines enhanced bortezomib sensitivity, POMP overexpression in drug-naive cells conferred resistance. Overexpression of POMP was associated with increased levels of nuclear factor (erythroid-derived 2)-like (NRF2), and NRF2 was found to bind to and activate the POMP promoter. Knockdown of NRF2 in bortezomib-resistant cells reduced POMP levels and proteasome activity, whereas its overexpression in drug-naive cells increased POMP and proteasome activity. The NRF2 inhibitor all-trans-retinoic acid reduced cellular NRF2 levels and increased the anti-proliferative and pro-apoptotic activities of bortezomib in resistant cells, while decreasing proteasome capacity. Finally, the combination of all-trans-retinoic acid with bortezomib showed enhanced activity against primary patient samples and in a murine model of bortezomib-resistant myeloma. Taken together, these studies validate a role for the NRF2/POMP axis in bortezomib resistance and identify NRF2 and POMP as potentially attractive targets for chemosensitization to this proteasome inhibitor.  相似文献   
103.
104.
105.
The interaction between silver nanoparticles and herpesviruses is attracting great interest due to their antiviral activity and possibility to use as microbicides for oral and anogenital herpes. In this work, we demonstrate that tannic acid modified silver nanoparticles sized 13 nm, 33 nm and 46 nm are capable of reducing HSV-2 infectivity both in vitro and in vivo. The antiviral activity of tannic acid modified silver nanoparticles was size-related, required direct interaction and blocked virus attachment, penetration and further spread. All tested tannic acid modified silver nanoparticles reduced both infection and inflammatory reaction in the mouse model of HSV-2 infection when used at infection or for a post-infection treatment. Smaller-sized nanoparticles induced production of cytokines and chemokines important for anti-viral response. The corresponding control buffers with tannic acid showed inferior antiviral effects in vitro and were ineffective in blocking in vivo infection. Our results show that tannic acid modified silver nanoparticles are good candidates for microbicides used in treatment of herpesvirus infections.  相似文献   
106.

Background

Detection of HIV-1 p24 antigen permits early identification of primary HIV infection and timely intervention to limit further spread of the infection. Principally, HIV screening should equally detect all viral variants, but reagents for a standardised test evaluation are limited. Therefore, we aimed to create an inexhaustible panel of diverse HIV-1 p24 antigens.

Methods

We generated a panel of 43 recombinantly expressed virus-like particles (VLPs), containing the structural Gag proteins of HIV-1 subtypes A-H and circulating recombinant forms (CRF) CRF01_AE, CRF02_AG, CRF12_BF, CRF20_BG and group O. Eleven 4th generation antigen/antibody tests and five antigen-only tests were evaluated for their ability to detect VLPs diluted in human plasma to p24 concentrations equivalent to 50, 10 and 2 IU/ml of the WHO p24 standard. Three tests were also evaluated for their ability to detect p24 after heat-denaturation for immune-complex disruption, a pre-requisite for ultrasensitive p24 detection.

Results

Our VLP panel exhibited an average intra-clade p24 diversity of 6.7%. Among the 4th generation tests, the Abbott Architect and Siemens Enzygnost Integral 4 had the highest sensitivity of 97.7% and 93%, respectively. Alere Determine Combo and BioRad Access were least sensitive with 10.1% and 40.3%, respectively. Antigen-only tests were slightly more sensitive than combination tests. Almost all tests detected the WHO HIV-1 p24 standard at a concentration of 2 IU/ml, but their ability to detect this input for different subtypes varied greatly. Heat-treatment lowered overall detectability of HIV-1 p24 in two of the three tests, but only few VLPs had a more than 3-fold loss in p24 detection.

Conclusions

The HIV-1 Gag subtype panel has a broad diversity and proved useful for a standardised evaluation of the detection limit and breadth of subtype detection of p24 antigen-detecting tests. Several tests exhibited problems, particularly with non-B subtypes.  相似文献   
107.
Type I restriction-modification (RM) systems are large, multifunctional enzymes composed of three different subunits. HsdS and HsdM form a complex in which HsdS recognizes the target DNA sequence, and HsdM carries out methylation of adenosine residues. The HsdR subunit, when associated with the HsdS-HsdM complex, translocates DNA in an ATP-dependent process and cleaves unmethylated DNA at a distance of several thousand base-pairs from the recognition site. The molecular mechanism by which these enzymes translocate the DNA is not fully understood, in part because of the absence of crystal structures. To date, crystal structures have been determined for the individual HsdS and HsdM subunits and models have been built for the HsdM-HsdS complex with the DNA. However, no structure is available for the HsdR subunit. In this work, the gene coding for the HsdR subunit of EcoR124I was re-sequenced, which showed that there was an error in the published sequence. This changed the position of the stop codon and altered the last 17 amino acid residues of the protein sequence. An improved purification procedure was developed to enable HsdR to be purified efficiently for biophysical and structural analysis. Analytical ultracentrifugation shows that HsdR is monomeric in solution, and the frictional ratio of 1.21 indicates that the subunit is globular and fairly compact. Small angle neutron-scattering of the HsdR subunit indicates a radius of gyration of 3.4 nm and a maximum dimension of 10 nm. We constructed a model of the HsdR using protein fold-recognition and homology modelling to model individual domains, and small-angle neutron scattering data as restraints to combine them into a single molecule. The model reveals an ellipsoidal shape of the enzymatic core comprising the N-terminal and central domains, and suggests conformational heterogeneity of the C-terminal region implicated in binding of HsdR to the HsdS-HsdM complex.  相似文献   
108.
Large proton fluxes accompany cell migration, but their precise role remains unclear. We studied pH regulation during the course of chemokinesis and chemotaxis in human neutrophils stimulated by attractant peptides. Activation of cell motility by chemoattractants was accompanied by a marked increase in metabolic acid generation, attributable to energy consumption by the contractile machinery and to stimulation of the NADPH oxidase and the ancillary hexose monophosphate shunt. Despite the increase in acid production, the cytosol underwent a sizable alkalinization, caused by acceleration of Na(+)/H(+) exchange. The development of the alkalinization mirrored the increase in the rate of cell migration, suggesting a causal relationship. However, elimination of Na(+)/H(+) exchange by omission of external Na(+) or by addition of potent inhibitors was without effect on either chemokinesis or chemotaxis, provided the cytosolic pH remained near neutrality. At more acidic levels, cell motility was progressively inhibited. These observations suggest that Na(+)/H(+) exchange plays a permissive role in cell motility but is not required for the initiation or development of the migratory response. Chemokinesis also was found to be exquisitely sensitive to extracellular acidification. This property may account for the inability of neutrophils to access abscesses and solid tumors that have been reported to have inordinately low pH.  相似文献   
109.
M Orlowski 《Biochemistry》2001,40(50):15318-15326
Two distinct activities cleaving bonds after hydrophobic amino acids have been identified in the bovine pituitary 20 S proteasome. One, expressed by the X subunit, that cleaves bonds after aromatic and branched chain amino acids was designated as chymotrypsin-like (ChT-L).(1) The second, expressed by the Y subunit, that cleaves bonds after acidic amino acids was designated as peptidylglutamyl-peptide hydrolyzing (PGPH) but also cleaves bonds after branched chain amino acids. Low micromolar concentrations of the arginine-rich histone H3 (H3) are shown to induce changes in the specificity of the proteasome by selectively activating cleavages after branched chain and acidic amino acids while inhibiting cleavage of peptidyl-arylamide bonds in synthetic substrates. H3 activates 15-fold cleavage after leucine but not phenylalanine residues in model synthetic substrates. The activation is associated with a decrease in K(m) and an increase in V(max), suggesting positive allosteric activation. H3 activates more than 60-fold degradation of the oxidized B-chain of insulin, by cleaving mainly bonds after acidic and branched chain amino acids, and accelerates the degradation of casein and lysozyme, the latter in the presence of dithiothreitol. The degradation of lysozyme in the presence of H3 generates fragments that differ from those in its absence, indicating H3-induced specificity changes. H3 inhibits cleavage of the Trp3-Ser4 and Tyr5-Gly6 bonds in gonadotropin releasing hormone, bonds cleaved by the ChT-L activity in the absence of H3. The results suggest H3-selective activation of the Y subunit and specificity changes that could potentially affect proteasomal function in the nuclear compartment.  相似文献   
110.
Ubiquitin-independent proteolytic functions of the proteasome   总被引:10,自引:0,他引:10  
The discovery of the 20S proteasome (multicatalytic proteinase complex) was followed by the recognition that this multisubunit macromolecule is the proteolytic core of the 26S proteasome. Most of the research on extralysosomal proteolysis has concentrated on the role of the 26S proteasome in the ubiquitin-dependent proteolytic pathway. However, little attention has been directed toward the possible involvement of the proteasome in ubiquitin-independent proteolysis. In the past few years, many publications have provided evidence that both the 20S proteasome and the 26S proteasome can degrade some proteins in an ubiquitin-independent manner. Furthermore, it is becoming clear that demonstration of ubiquitin-protein conjugates after exposure of cells to proteasome inhibitors does not eliminate the possibility that the same protein can also be degraded by the proteasome without ubiquitination. The possible mechanisms of degradation of an unmodified protein by the 20S proteasome are discussed. These include targeting, protein unfolding, and opening of the gated channel to the catalytic sites. It is reasonable to assume that in the future the number of proteins recognized as substates of the ubiquitin-independent pathway will continue to increase, and that the metabolic significance of this pathway will be clarified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号