首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1259篇
  免费   61篇
  2023年   4篇
  2022年   13篇
  2021年   21篇
  2020年   11篇
  2019年   18篇
  2018年   14篇
  2017年   11篇
  2016年   32篇
  2015年   46篇
  2014年   57篇
  2013年   100篇
  2012年   94篇
  2011年   81篇
  2010年   52篇
  2009年   61篇
  2008年   62篇
  2007年   53篇
  2006年   74篇
  2005年   72篇
  2004年   63篇
  2003年   67篇
  2002年   45篇
  2001年   10篇
  2000年   7篇
  1999年   14篇
  1998年   11篇
  1997年   15篇
  1996年   11篇
  1995年   11篇
  1994年   10篇
  1993年   5篇
  1992年   15篇
  1991年   15篇
  1990年   9篇
  1989年   10篇
  1988年   6篇
  1987年   4篇
  1986年   5篇
  1985年   6篇
  1984年   18篇
  1982年   9篇
  1980年   4篇
  1977年   4篇
  1975年   4篇
  1974年   6篇
  1965年   5篇
  1964年   3篇
  1917年   3篇
  1916年   3篇
  1915年   3篇
排序方式: 共有1320条查询结果,搜索用时 15 毫秒
51.
Optimized hydrolysis of lignocellulosic waste biomass is essential to achieve the liberation of sugars to be used in fermentation process. Ionic liquids (ILs), a new class of solvents, have been tested in the pretreatment of cellulosic materials to improve the subsequent enzymatic hydrolysis of the biomass. Optimized application of ILs on biomass is important to advance the use of this technology. In this research, we investigated the effects of using 1‐butyl‐3‐methylimidazolium acetate ([bmim][Ac]) on the decomposition of soybean hull, an abundant cellulosic industrial waste. Reaction aspects of temperature, incubation time, IL concentration, and solid load were optimized before carrying out the enzymatic hydrolysis of this residue to liberate fermentable glucose. Optimal conditions were found to be 75°C, 165 min incubation time, 57% (mass fraction) of [bmim][Ac], and 12.5% solid loading. Pretreated soybean hull lost its crystallinity, which eased enzymatic hydrolysis, confirmed by Fourier Transform Infrared analysis. The enzymatic hydrolysis of the biomass using an enzyme complex from Penicillium echinulatum liberated 92% of glucose from the cellulose matrix. The hydrolysate was free of any toxic compounds, such as hydroxymethylfurfural and furfural. The obtained hydrolysate was tested for fermentation using Candida shehatae HM 52.2, which was able to convert glucose to ethanol at yields of 0.31. These results suggest the possible use of ILs for the pretreatment of some lignocellulosic waste materials, avoiding the formation of toxic compounds, to be used in second‐generation ethanol production and other fermentation processes. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:312–320, 2016  相似文献   
52.
During ontogeny, complex adaptations undergo changes that sometimes entail different functional capabilities. This fact constrains the behaviour of organisms at each developmental stage. Rodents have ever‐growing incisors for gnawing, and a powerful jaw musculature. The incisors are long enough, relative to their diameter, to be affected by bending stresses. This is particularly true in the subterranean Ctenomys that uses its incisors for digging. We measured bite force (BF) in individuals of different ages using a force transducer. We estimated incisor section modulus Z, a geometrical parameter proportional to bending strength. A relative strength indicator was calculated as S = Z/BF incisor length. We found that ontogenetic BF scales to body mass with positive allometry. However, an anova showed non‐significant differences in S, neither between sexes nor among age classes. This result implies that during growth, incisors might have a rather similar ability to withstand bending stresses from increasing masticatory forces, what may be considered evidence of ontogenetic integration of force production (by muscles) and force reception (by the incisors). This fact well correlates with the observation that pups and juveniles of C. talarum incorporate solid foods shortly after birth, and they are able to dig burrows early in life.  相似文献   
53.
Trichoderma has been used to manage a large number of pathogens, but there is a gap in the mechanisms used by these biocontrol agents regarding the physiological response of cassava plants (Manihot esculenta) when it is subjected to cassava root rot. The aims of this study were to investigate the antagonist activity of ten Trichoderma isolates against Fusarium solani on potato dextrose Agar (PDA), to quantify the chitinase production, to select and test in vivo the best isolate from each experiment and to assess the physiological response of cassava to the production of oxidative enzyme complex production (ascorbate peroxidase, catalase, peroxidase and polyphenol oxidase). All Trichoderma isolates have shown competitive capability against F. solani, and Trichoderma hamatum URM 6656 showed the highest inhibition of pathogen growth (88.91%). All isolates have shown chitinase activity, but Trichoderma aureoviride URM 5158 produced the highest amount of chitinase. T. hamatum URM 6656 and Taureoviride URM 5158 were selected to be applied in vivo. The two Trichoderma strains reduced 64 and 60% of the disease severity in the shoot and 82 and 84% in the root. Cassava plants infected with Trichoderma have shown the highest peroxidase and ascorbate peroxidase production. Our results have indicated that T. aureoviride URM 5158 is an effective biocontrol agent against cassava root rot caused by F. solani, because it presented competitive antagonist capability in vitro, the highest chitinase production, and reduced the cassava root rot severity. The application of T. aureoviride has led to the maximum enzyme activity of reactive oxygen species group in cassava plants.  相似文献   
54.
55.
Extracellular vesicles are small (~50–200 nm diameter) membrane-bound structures released by cells from all domains of life. While vesicles are abundant in the oceans, their functions, both for cells themselves and the emergent ecosystem, remain a mystery. To better characterize these particles – a prerequisite for determining function – we analysed the lipid, protein, and metabolite content of vesicles produced by the marine cyanobacterium Prochlorococcus. We show that Prochlorococcus exports a diverse array of cellular compounds into the surrounding seawater enclosed within discrete vesicles. Vesicles produced by two different strains contain some materials in common, but also display numerous strain-specific differences, reflecting functional complexity within vesicle populations. The vesicles contain active enzymes, indicating that they can mediate extracellular biogeochemical reactions in the ocean. We further demonstrate that vesicles from Prochlorococcus and other bacteria associate with diverse microbes including the most abundant marine bacterium, Pelagibacter. Together, our data point toward hypotheses concerning the functional roles of vesicles in marine ecosystems including, but not limited to, possibly mediating energy and nutrient transfers, catalysing extracellular biochemical reactions, and mitigating toxicity of reactive oxygen species.  相似文献   
56.
The morbidity of acute pericarditis is increasing over time impacting on patient quality of life. Recent clinical trials focused especially on clinical aspects, with a modest interest in pathophysiological mechanisms. This narrative review, based on papers in English language obtained via PubMed up to April 2018, aims at focusing on the role of the innate immunity in pericarditis and discussing future potential therapeutic strategies impacting on disease pathophysiology. In developed countries, most cases of pericarditis are referred to as idiopathic, although etiological causes have been described, with autoreactive/lymphocytic, malignant, and infectious ones as the most frequent causes. Apart the known impairment of the adaptive immunity, recently a large body evidence indicated the central role of the innate immune system in the pathogenesis of recurrent pericarditis, starting from similarities with autoinflammatory diseases. Accordingly, the “inflammasome” has been shown to behave as an important player in pericarditis development. Similarly, the beneficial effect of colchicine in recurrent pericarditis confirms that neutrophils are important effectors as colchicine, which can block neutrophil chemotaxis, interferes with neutrophil adhesion and recruitment to injured tissues and abrogate superoxide production. Anyway, the role of the adaptive immune system in pericarditis cannot be reduced to a black or white issue as mechanisms often overlap. Therefore, we believe that more efficient therapeutic strategies have to be investigated by targeting neutrophil-derived mediators (such as metalloproteinases) and disentangling the strict interplay between neutrophils and platelets. In this view, some progress has been done by using the recombinant human interleukin-1 receptor antagonist anakinra.  相似文献   
57.
The myc gene family has been implicated in multiple cell processes including proliferation, differentiation, tumorigenesis, and apoptosis. For its cellular growth promoting function, Myc must heterodimerize with Max. To study the effect of Myc inactivation on the growth and differentiation properties of epithelial tumor cells, we transfected the H-630 human colon cancer cell line with bm-max, a mutant Max protein in which DNA-binding activity has been abolished. Cells expressing high levels of bm-Max grow poorly, and the morphology of both colonies and single cells is altered. Moreover, increased bm-Max expression results in a prolonged G0/G1 phase accompanied by induced expression of p21 (WAF1/CIP1), elevated levels of alkaline phosphatase (ALP) activity, and accumulation of large fat granuli within the cells. These distinctive cell characteristics are associated with differentiation processes in numerous malignant cell lines. The results of this study support a model in which sequestering of endogenous Myc and Max proteins into “basic mutant” dimers lacking DNA-binding activity is sufficient both to inhibit proliferation and to induce changes in cell behavior consistent with differentiation. © 1996 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   
    58.
    Translation initiation of the viral genomic mRNA (vRNA) of human immunodeficiency virus-type 1 (HIV-1) can be mediated by a cap- or an internal ribosome entry site (IRES)-dependent mechanism. A previous report shows that Staufen1, a cellular double-stranded (ds) RNA-binding protein (RBP), binds to the 5’untranslated region (5′UTR) of the HIV-1 vRNA and promotes its cap-dependent translation. In this study, we now evaluate the role of Staufen1 as an HIV-1 IRES-transacting factor (ITAF). We first confirm that Staufen1 associates with both the HIV-1 vRNA and the Gag protein during HIV-1 replication. We found that in HIV-1-expressing cells, siRNA-mediated depletion of Staufen1 reduces HIV-1 vRNA translation. Using dual-luciferase bicistronic mRNAs, we show that the siRNA-mediated depletion and cDNA-mediated overexpression of Staufen1 acutely regulates HIV-1 IRES activity. Furthermore, we show that Staufen1-vRNA interaction is required for the enhancement of HIV-1 IRES activity. Interestingly, we find that only Staufen1 harboring an intact dsRNA-binding domain 3 (dsRBD3) rescues HIV-1 IRES activity in Staufen1 CRISPR-Cas9 gene edited cells. Finally, we show that the expression of Staufen1-dsRBD3 alone enhances HIV-1 IRES activity. This study provides evidence of a novel role for Staufen1 as an ITAF promoting HIV-1 vRNA IRES activity.  相似文献   
    59.
    60.
    Acute and chronic inflammations are key homeostatic events in health and disease. Sirtuins (SIRTs), a family of NAD-dependent protein deacylases, play a pivotal role in the regulation of these inflammatory responses. Indeed, SIRTs have anti-inflammatory effects through a myriad of signaling cascades, including histone deacetylation and gene silencing, p65/RelA deacetylation and inactivation, and nucleotide‑binding oligomerization domain, leucine rich repeat, and pyrin domain‑containing protein 3 inflammasome inhibition. Nevertheless, recent findings show that SIRTs, specifically SIRT6, are also necessary for mounting an active inflammatory response in macrophages. SIRT6 has been shown to positively regulate tumor necrosis factor alpha (TNFα) secretion by demyristoylating pro-TNFα in the cytoplasm. However, how SIRT6, a nuclear chromatin-binding protein, fulfills this function in the cytoplasm is currently unknown. Herein, we show by Western blot and immunofluorescence that in macrophages and fibroblasts there is a subpopulation of SIRT6 that is highly unstable and quickly degraded via the proteasome. Upon lipopolysaccharide stimulation in Raw 264.7, bone marrow, and peritoneal macrophages, this population of SIRT6 is rapidly stabilized and localizes in the cytoplasm, specifically in the vicinity of the endoplasmic reticulum, promoting TNFα secretion. Furthermore, we also found that acute SIRT6 inhibition dampens TNFα secretion both in vitro and in vivo, decreasing lipopolysaccharide-induced septic shock. Finally, we tested SIRT6 relevance in systemic inflammation using an obesity-induced chronic inflammatory in vivo model, where TNFα plays a key role, and we show that short-term genetic deletion of SIRT6 in macrophages of obese mice ameliorated systemic inflammation and hyperglycemia, suggesting that SIRT6 plays an active role in inflammation-mediated glucose intolerance during obesity.  相似文献   
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号