首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   236篇
  免费   24篇
  国内免费   1篇
  2022年   2篇
  2021年   5篇
  2019年   4篇
  2018年   1篇
  2017年   4篇
  2016年   5篇
  2015年   10篇
  2014年   16篇
  2013年   10篇
  2012年   17篇
  2011年   21篇
  2010年   16篇
  2009年   12篇
  2008年   18篇
  2007年   16篇
  2006年   16篇
  2005年   15篇
  2004年   13篇
  2003年   16篇
  2002年   13篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1997年   1篇
  1996年   3篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1991年   1篇
  1988年   3篇
  1985年   2篇
  1983年   1篇
  1982年   2篇
  1976年   1篇
排序方式: 共有261条查询结果,搜索用时 15 毫秒
101.
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous inherited disorder arising from dysmotility of motile cilia and sperm. This is associated with a variety of ultrastructural defects of the cilia and sperm axoneme that affect movement, leading to clinical consequences on respiratory-tract mucociliary clearance and lung function, fertility, and left-right body-axis determination. We performed whole-genome SNP-based linkage analysis in seven consanguineous families with PCD and central-microtubular-pair abnormalities. This identified two loci, in two families with intermittent absence of the central-pair structure (chromosome 6p21.1, Zmax 6.7) and in five families with complete absence of the central pair (chromosome 6q22.1, Zmax 7.0). Mutations were subsequently identified in two positional candidate genes, RSPH9 on chromosome 6p21.1 and RSPH4A on chromosome 6q22.1. Haplotype analysis identified a common ancestral founder effect RSPH4A mutation present in UK-Pakistani pedigrees. Both RSPH9 and RSPH4A encode protein components of the axonemal radial spoke head. In situ hybridization of murine Rsph9 shows gene expression restricted to regions containing motile cilia. Investigation of the effect of knockdown or mutations of RSPH9 orthologs in zebrafish and Chlamydomonas indicate that radial spoke head proteins are important in maintaining normal movement in motile, “9+2”-structure cilia and flagella. This effect is rescued by reintroduction of gene expression for restoration of a normal beat pattern in zebrafish. Disturbance in function of these genes was not associated with defects in left-right axis determination in humans or zebrafish.  相似文献   
102.
A search for bacterium-specific biomarkers in peripheral blood following infection with Bacillus anthracis was carried out with rabbits, using a battery of specific antibodies generated by DNA vaccination against 10 preselected highly immunogenic bacterial antigens which were identified previously by a genomic/proteomic/serologic screen of the B. anthracis secretome. Detection of infection biomarkers in the circulation of infected rabbits could be achieved only after removal of highly abundant serum proteins by chromatography using a random-ligand affinity column. Besides the toxin component protective antigen, the following three secreted proteins were detected in the circulation of infected animals: the chaperone and protease HtrA (BA3660), an NlpC/P60 endopeptidase (BA1952), and a protein of unknown function harboring two SH3 (Src homology 3) domains (BA0796). The three proteins could be detected in plasma samples from infected animals exhibiting 103 to 105 CFU/ml blood and also in standard blood cultures at 3 to 6 h post-bacterial inoculation at a bacteremic level as low as 103 CFU/ml. Furthermore, the three biomarkers appear to be present only in the secretome of B. anthracis, not in those of the related pathogens B. thuringiensis and B. cereus. To the best of our knowledge, this is the first report of direct detection of B. anthracis-specific proteins, other than the toxin components, in the circulation of infected animals.The gram-positive spore-forming bacterium Bacillus anthracis is the causative agent of anthrax, a rare fatal disease which is initiated, in its most severe form, by inhalation of spores. Due to the severity of the disease, the ease of respiratory infection, and the extreme resistance of the spores to unfavorable environmental conditions, B. anthracis is considered a potential biological warfare agent (for a review, see references 8, 10, 35, 56, and 62), and in recent years, the need for novel reliable diagnostic approaches, improved vaccination strategies, novel therapeutic targets, and a better understanding of the pathogenesis of anthrax has been widely acknowledged.Inhaled B. anthracis spores are taken up by alveolar macrophages and germinate into vegetative bacilli which eventually invade the bloodstream, where they multiply massively and secrete toxins and virulence factors. Anthrax is toxinogenic in the sense that the bacterial binary exotoxin is necessary for the onset of the disease (54), yet other factors may be required for the colonization and expansion of bacteria in the host (15, 18, 31, 32, 37, 46, 65, 66, 70, 83). The toxin is composed of the following three proteins: protective antigen (PA), which mediates binding to the receptor on target cells and internalization of the toxin components (14, 74); lethal factor, a zinc protease targeting several mitogen-activated protein kinases (52); and edema factor (EF), a calmodulin-dependent adenylate cyclase (55, 57). The genes encoding the three exotoxin components are located on the native virulence plasmid pXO1. Genes encoding proteins with functions involved in the synthesis of the second major B. anthracis virulence determinant, an immunologically inert polyglutamyl capsule that protects bacteria from phagocytosis, are located on a second native virulence plasmid, pXO2 (56).In humans, the initial symptoms of inhalation anthrax are nonspecific and reminiscent of influenza-like upper respiratory tract infections. The second stage is characterized by high fever, respiratory failure, dyspnea, and shock. Unless patients are treated promptly, death occurs within 24 h of the onset of the second stage, preceded by massive bacteremia (27, 34, 73, 76). The mandatory treatment for anthrax is based on administration of antibiotics (17, 76), yet study of the disease in animal models has clearly established that the time of antibiotic administration postinfection is crucial for the effectiveness of the treatment, strongly supporting the importance of rapid diagnosis (2, 47, 48). At present, due to the severity of the disease and its rapid progression, treatment is administered to each person with confirmed contact with contaminated areas (76).Early accurate diagnosis of anthrax is complicated by the rarity of the disease and the nonspecific nature of the symptoms. Microbiologic identification of anthrax is based on the nonhemolytic nature of the typically white-gray colonies and the rod morphology of the gram-positive nonmotile bacilli detected in clinical samples or blood cultures (16, 19, 30, 73, 78). Immunofluorescence and immunohistochemistry targeted to bacterial proteins are not routinely conducted. Later in the course of the disease, seroconversion in response to the various components of the toxin may serve only as a retrospective confirmation of initial exposure. With the advent of genetic methodologies, B. anthracis in cultures inoculated with clinical and forensic samples can be detected specifically and accurately by PCR, usually designed to amplify genes located on the native virulence plasmids (30). Recently, the use of PA as a disease biomarker was suggested, owing to the presence of this protein in detectable amounts in the circulation of infected animals (53, 71). EF and lethal factor can be detected in the circulation only at later stages of infection (30).In recent years, the search for novel biomarkers of disease, including bacterial infections, has exploited the approach of global biological inspection based on functional genomic or proteomic studies (64, 85). We previously documented such global surveys, combined with a serological study of B. anthracis (5, 6, 20, 21, 22, 38, 39), for identification of vaccine and diagnostic marker candidates among extracellular (secreted or membranal) proteins. These studies indeed revealed a list of proteins that can serve as potential biomarkers, based on their immunogenicity (which probes their in vivo expression), abundance under various culture conditions, and functional relatedness to infection. In the present study, the search was extended by directly addressing the presence of bacterial secreted proteins in the circulation of B. anthracis-infected rabbits, using specific antibodies generated by DNA vaccination against the previously selected immunogenic proteins. Visualization of bacterial proteins in the circulation of infected animals was achieved only following depletion of highly abundant serum proteins by an affinity chromatography protocol. The search enabled the successful detection, in addition to PA, of three secreted proteins uniquely expressed by B. anthracis, i.e., HtrA (BA3660), the BA1952 endopeptidase, and a protein of unknown function (BA0796). All of these proteins are potential virulence-related factors. This is the first communication of the presence of B. anthracis secreted proteins other than the bacterial toxin in the circulation of infected animals, and their identification strongly supports the validity of the reductional screening approach for selection of disease biomarkers.  相似文献   
103.
104.
Ischemia-reperfusion injury (I/R) is the main cause of primary graft nonfunction. Our aim was to evaluate the effect of excessive versus acute administration of erythropoietin (EPO) in attenuating the hepatic injury induced by I/R in mice. The effect of segmental (70%) hepatic ischemia was evaluated in a transgenic mouse line with constitutive overexpression of human EPO cDNA and in wild-type (WT) mice. Mice were randomly allocated to 5 main experimental groups: (i) WT-sham, (ii) WT ischemia, (iii) WT ischemia + recombinant human erythropoietin (rhEPO), (iv) transgenic-sham, and (v) transgenic ischemia. The EPO-pretreated mice showed a significant reduction in liver enzyme levels and intrahepatic caspase-3 activity and fewer apoptotic hepatocytes (p < 0.05 for all) compared with the WT untreated I/R group. EPO decreased c-Jun N-terminal kinase (JNK) phosphorylation and nuclear factor-κB (NF-κB) expression during I/R. In transgenic I/R livers, baseline histology showed diffused hepatic injury, and no significant beneficial effect was noted between the WT untreated and the transgenic I/R mice. In conclusion, acute pretreatment with EPO in WT mice attenuated in vivo I/R liver injury. However, in excessive EPO overexpression, the initial liver injury abolished the beneficial effect of EPO. These findings have important implications for the potential use of acute EPO in I/R injury during liver transplantation.  相似文献   
105.
106.
107.
Efficient antitumor immune response requires the coordinated function of integrated immune components, but is finally exerted by the differentiated effector tumor-infiltrating lymphocytes (TIL). TIL cells comprise, therefore, an exciting platform for adoptive cell transfer (ACT) in cancer. In this study, we show that the inhibitory carcinoembryonic Ag cell adhesion molecule 1 (CEACAM1) protein is found on virtually all human TIL cells following preparation protocols of ACT treatment for melanoma. We further demonstrate that the CEACAM1 homophilic interactions inhibit the TIL effector functions, such as specific killing and IFN-gamma release. These results suggest that CEACAM1 may impair in vivo the antitumor response of the differentiated TIL. Importantly, CEACAM1 is commonly expressed by melanoma and its presence is associated with poor prognosis. Remarkably, the prolonged coincubation of reactive TIL cells with their melanoma targets results in increased functional CEACAM1 expression by the surviving tumor cells. This mechanism might be used by melanoma cells in vivo to evade ongoing destruction by tumor-reactive lymphocytes. Finally, CEACAM1-mediated inhibition may hinder in many cases the efficacy of TIL ACT treatment of melanoma. We show that the intensity of CEACAM1 expression on TIL cells constantly increases during ex vivo expansion. The implications of CEACAM1-mediated inhibition of TIL cells on the optimization of current ACT protocols and on the development of future immunotherapeutic modalities are discussed.  相似文献   
108.
We study the role of nano-scale cues in controlling neuronal growth. We use photolithography to fabricate substrates with repeatable line-pattern ridges of nano-scale heights. We find that neuronal processes, which are of micron size, have strong interactions with ridges even as low as 10 nm. The interaction between the neuronal process and the ridge leads to a deflection of growth direction and a preferred alignment with the ridges. The interaction strength clearly depends on the ridges' height. For 25 nm ridges approximately half of the neuronal processes are modified, while at 100 nm the majority of neurites change their original growth direction post interaction. In addition, the effect on growth correlates with the incoming angle between the neuronal process and the ridge. We underline the adhesion as a key mechanism in directing neuronal growth. Our study highlights the sensitivity of growing neurites to nano-scale cues thus opens a new avenue of research for pre-designed neuronal growth and circuitry.  相似文献   
109.
110.
The Mediterranean Sea is considered as one of the hotspots of marine bioinvasions, largely due to the influx of tropical species migrating through the Suez Canal, so-called Lessepsian migrants. Several cases of Lessepsian migration have been documented recently, however, little is known about the ecological characteristics of the migrating species and their aptitude to colonize the new areas. This study focused on Red Sea soritids, larger symbiont-bearing benthic foraminifera (LBF) that are indicative of tropical and subtropical environments and were recently found in the Israeli coast of the Eastern Mediterranean. We combined molecular phylogenetic analyses of soritids and their algal symbionts as well as network analysis of Sorites orbiculus Forskål to compare populations from the Gulf of Elat (northern Red Sea) and from a known hotspot in Shikmona (northern Israel) that consists of a single population of S. orbiculus. Our phylogenetic analyses show that all specimens found in Shikmona are genetically identical to a population of S. orbiculus living on a similar shallow water pebbles habitat in the Gulf of Elat. Our analyses also show that the symbionts found in Shikmona and Elat soritids belong to the Symbiodinium clade F5, which is common in the Red Sea and also present in the Indian Ocean and Caribbean Sea. Our study therefore provides the first genetic and ecological evidences that indicate that modern population of soritids found on the Mediterranean coast of Israel is probably Lessepsian, and is less likely the descendant of a native ancient Mediterranean species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号