首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   15篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2018年   2篇
  2017年   4篇
  2016年   4篇
  2015年   4篇
  2014年   12篇
  2013年   12篇
  2012年   9篇
  2011年   13篇
  2010年   6篇
  2009年   8篇
  2008年   9篇
  2007年   10篇
  2006年   12篇
  2005年   5篇
  2004年   9篇
  2003年   13篇
  2002年   5篇
  2001年   6篇
  2000年   6篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   5篇
  1990年   1篇
  1989年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   5篇
  1983年   1篇
  1972年   1篇
排序方式: 共有186条查询结果,搜索用时 500 毫秒
91.
Anti-neutrophil cytoplasmic antibodies (ANCA) are the serological hallmark of small vessel vasculitis, so called ANCA-associated vasculitis. The international consensus requires testing by indirect immunofluorescence (IIF) on human ethanol-fixed neutrophils (ethN) as screening followed by confirmation with enzyme-linked immunosorbent assays (ELISAs). This study evaluates the combination of cell- and microbead-based digital IIF analysis of ANCA in one reaction environment by the novel multiplexing CytoBead technology for simultaneous screening and confirmatory ANCA testing. Sera of 592 individuals including 118 patients with ANCA-associated vasculitis, 133 with rheumatoid arthritis, 49 with infectious diseases, 77 with inflammatory bowel syndrome, 20 with autoimmune liver diseases, 70 with primary sclerosing cholangitis and 125 blood donors were tested for cytoplasmic ANCA (C-ANCA) and perinuclear ANCA (P-ANCA) by classical IIF and ANCA to proteinase 3 (PR3) and myeloperoxidase (MPO) by ELISA. These findings were compared to respective ANCA results determined by automated multiplex CytoBead technology using ethN and antigen-coated microbeads for microbead immunoassays. There was a good agreement for PR3- and MPO-ANCA and a very good one for P-ANCA and C-ANCA by classical and multiplex analysis (Cohen''s kappa [κ] = 0.775, 0.720, 0.876, 0.820, respectively). The differences between classical testing and CytoBead analysis were not significant for PR3-ANCA, P-ANCA, and C-ANCA (p<0.05, respectively). The prevalence of confirmed positive ANCA findings by classical testing (IIF and ELISA) compared with multiplex CytoBead analysis (IIF and microbead immunoassay positive) resulted in a very good agreement (κ = 0.831) with no significant difference of both methods (p = 0.735). Automated endpoint-ANCA titer detection in one dilution demonstrated a very good agreement with classical analysis requiring dilution of samples (κ = 0.985). Multiplexing by CytoBead technology can be employed for simultaneous screening and quantitative confirmation of ANCA. This novel technique provides fast and cost-effective ANCA analysis by automated digital IIF for the first time.  相似文献   
92.
93.
Sharka is a severe apricot viral disease caused by the plum pox virus (PPV) and is responsible for large crop losses in many countries. Among the known PPV strains, both PPV-D (Dideron) and PPV-M (Marcus) are virulent in apricot, the latter being the most threatening. An F1 apricot progeny derived from Lito, described in the literature as resistant, crossed to the susceptible selection BO81604311 (San Castrese × Reale di Imola) was used to study the genetic control of resistance to PPV. A population of 118 individuals was phenotyped by inoculating both PPV-D and PPV-M strains in replicated seedlings and scored for 3 years. An additional set of 231 seedlings from the same cross was also phenotyped for 2 years. SSR-based linkage maps were used for quantitative trait locus (QTL) analysis. A major QTL of resistance to both PPV-M and PPV-D strains was found in the top half of the Lito linkage group 1, where a QTL was previously described in Stark Earli-Orange, the donor of Lito resistance. The LOD score was considerably enhanced when the recovery of plants from infection was taken into account. The results obtained in Lito were compared with those observed in a second apricot cross progeny (Harcot × Reale di Imola) in which QTL of resistance to sharka were also mapped in the same linkage group 1 for both PPV strains. Several models of resistance to sharka disease are discussed considering the segregation frequencies, the QTL alignment in the two maps and the information gathered from the literature.  相似文献   
94.
Circulating tumour cells (CTCs) are independent predictor of prognosis in metastatic breast cancer. Nevertheless, in one third of patients, circulating tumour cells are undetected by conventional methods. Aim of the study was to assess the prognostic value of circulating tumour cells expressing mesenchymal markers in metastatic breast cancer patients. We isolated CTC from blood of 55 metastatic breast cancer patients. CTC were characterized for cytokeratins and markers of epithelial mesenchymal transition. The gain of mesenchymal markers in CTC was correlated to prognosis of patients in a follow-up of 24 months. The presence of mesenchymal markers on CTC more accurately predicted worse prognosis than the expression of cytokeratins alone. Because of the frequent loss of epithelial antigens by CTC, assays targeting epithelial antigens may miss the most invasive cell population. Thus, there is an urgent need to improve detection methods to identify CTC which undergone epithelial mesenchymal transition program.  相似文献   
95.
Selenium is an essential trace element and selenoprotein N (SelN) was the first selenium-containing protein shown to be directly involved in human inherited diseases. Mutations in the SEPN1 gene, encoding SelN, cause a group of muscular disorders characterized by predominant affection of axial muscles. SelN has been shown to participate in calcium and redox homeostasis, but its pathophysiological role in skeletal muscle remains largely unknown. To address SelN function in vivo, we generated a Sepn1-null mouse model by gene targeting. The Sepn1(-/-) mice had normal growth and lifespan, and were macroscopically indistinguishable from wild-type littermates. Only minor defects were observed in muscle morphology and contractile properties in SelN-deficient mice in basal conditions. However, when subjected to challenging physical exercise and stress conditions (forced swimming test), Sepn1(-/-) mice developed an obvious phenotype, characterized by limited motility and body rigidity during the swimming session, as well as a progressive curvature of the spine and predominant alteration of paravertebral muscles. This induced phenotype recapitulates the distribution of muscle involvement in patients with SEPN1-Related Myopathy, hence positioning this new animal model as a valuable tool to dissect the role of SelN in muscle function and to characterize the pathophysiological process.  相似文献   
96.
Dynamin 2 (Dnm2) is involved in endocytosis and intracellular membrane trafficking through its function in vesicle formation from distinct membrane compartments. Heterozygous (HTZ) mutations in the DNM2 gene cause dominant centronuclear myopathy or Charcot-Marie-Tooth neuropathy. We generated a knock-in Dnm2R465W mouse model expressing the most frequent human mutation and recently reported that HTZ mice progressively developed a myopathy. We investigated here the cause of neonatal lethality occurring in homozygous (HMZ) mice. We show that HMZ mice present at birth with a reduced body weight, hypoglycemia, increased liver glycogen content and hepatomegaly, in agreement with a defect in neonatal autophagy. In vitro studies performed in HMZ embryonic fibroblasts point out to a decrease in the autophagy flux prior to degradation at the autolysosome. We show that starved HMZ cells have a higher number of immature autophagy-related structures probably due to a defect of acidification. Our results highlight the role of Dnm2 in the cross talk between endosomal and autophagic pathways and evidence a new role of Dnm2-dependent membrane trafficking in autophagy which may be relevant in DNM2-related human diseases.  相似文献   
97.
Localization of cholecystokinin receptor subtypes in the endocine pancreas.   总被引:3,自引:0,他引:3  
This study was undertaken to clarify the controversy in the literature about pancreatic localization of the cholecystokinin (CCK) CCK(A) and CCK(B) receptors. With antibodies used by other investigators, we first established their specificity by Western blotting, indirect immunofluorescence, and confocal microscopy with each antibody's peptide antigen. Co-localization assays between the CCK receptors and the pancreatic hormones insulin, glucagon, and somatostatin revealed that the CCK(A) RAbs 1122 and R1-2 recognized insulin and glucagon cells in rat, pig, and human pancreas but not in the somatostatin cells. Conversely, the three CCK(B) RAbs tested, 9262, 9491, and GR4, identified the somatostatin cells. Abs 9491 and GR4 occasionally co-localized with glucagon, a feature that never occurred with Ab 9262. Finally, the specificity of Ab 9262 for the pancreatic CCK(B) R was confirmed in six different species. It co-localized with somatostatin but never with glucagon in these species. Our data suggest the use of Abs 1122 and 9262 to specifically identify and localize pancreatic CCK(A) and CCK(B) receptors, respectively. Confusion in the literature may result from the lack of specificity of most antibodies used, as established in this study.  相似文献   
98.
Meiotic recombination is initiated by the formation of numerous DNA double-strand breaks (DSBs) catalysed by the widely conserved Spo11 protein. In Saccharomyces cerevisiae, Spo11 requires nine other proteins for meiotic DSB formation; however, unlike Spo11, few of these are conserved across kingdoms. In order to investigate this recombination step in higher eukaryotes, we took advantage of a high-throughput meiotic mutant screen carried out in the model plant Arabidopsis thaliana. A collection of 55,000 mutant lines was screened, and spo11-like mutations, characterised by a drastic decrease in chiasma formation at metaphase I associated with an absence of synapsis at prophase, were selected. This screen led to the identification of two populations of mutants classified according to their recombination defects: mutants that repair meiotic DSBs using the sister chromatid such as Atdmc1 or mutants that are unable to make DSBs like Atspo11-1. We found that in Arabidopsis thaliana at least four proteins are necessary for driving meiotic DSB repair via the homologous chromosomes. These include the previously characterised DMC1 and the Hop1-related ASY1 proteins, but also the meiotic specific cyclin SDS as well as the Hop2 Arabidopsis homologue AHP2. Analysing the mutants defective in DSB formation, we identified the previously characterised AtSPO11-1, AtSPO11-2, and AtPRD1 as well as two new genes, AtPRD2 and AtPRD3. Our data thus increase the number of proteins necessary for DSB formation in Arabidopsis thaliana to five. Unlike SPO11 and (to a minor extent) PRD1, these two new proteins are poorly conserved among species, suggesting that the DSB formation mechanism, but not its regulation, is conserved among eukaryotes.  相似文献   
99.
Large increases in cAMP concentration inside the cell are generally growth inhibitory for most cell lines of mesenchymal and epithelial origin. Moreover, recent data suggest a role of cAMP in survival of different cell types. Herein, the ability of forskolin (an adenylyl cyclase activator) and IBMX (3-isobutyl-1-methylxanthine) (a phosphodiesterase inhibitor) to modulate cell cycle progression and survival of human pancreatic cancer cells was evaluated. We showed that forskolin + IBMX inhibited serum-induced ERK activities, Rb hyperphosphorylation, Cdk2 activity, and p27(Kip1) downregulation and caused G1 arrest in MIA PaCa-2 cells. Furthermore, forskolin + IBMX protected pancreatic cells against apoptosis induced by prolonged inhibition of ERK activities by preventing Bcl-X(L) downregulation, activation of caspases 3, 6, 8, and 9, and PARP cleavage and by inducing Bad phosphorylation (ser112). Taken together, our data demonstrate for the first time that cAMP is an inhibitor of cell cycle progression and apoptosis in human pancreatic cancer cells.  相似文献   
100.
Peutz-Jeghers syndrome is an inherited cancer syndrome that results in a greatly increased risk of developing tumors in those affected. The causative gene is a protein kinase termed LKB1, predicted to function as a tumor suppressor. The mechanism by which LKB1 is regulated in cells is not known. Here, we demonstrate that stimulation of Rat-2 or embryonic stem cells with activators of ERK1/2 or of cAMP-dependent protein kinase induced phosphorylation of endogenously expressed LKB1 at Ser(431). We present pharmacological and genetic evidence that p90(RSK) mediated this phosphorylation in response to agonists that activate ERK1/2 and that cAMP-dependent protein kinase mediated this phosphorylation in response to agonists that activate adenylate cyclase. Ser(431) of LKB1 lies adjacent to a putative prenylation motif, and we demonstrate that full-length LKB1 expressed in 293 cells was prenylated by addition of a farnesyl group to Cys(433). Our data suggest that phosphorylation of LKB1 at Ser(431) does not affect farnesylation and that farnesylation does not affect phosphorylation at Ser(431). Phosphorylation of LKB1 at Ser(431) did not alter the activity of LKB1 to phosphorylate itself or the tumor suppressor protein p53 or alter the amount of LKB1 associated with cell membranes. The reintroduction of wild-type LKB1 into a cancer cell line that lacks LKB1 suppressed growth, but mutants of LKB1 in which Ser(431) was mutated to Ala to prevent phosphorylation of LKB1 were ineffective in inhibiting growth. In contrast, a mutant of LKB1 that cannot be prenylated was still able to suppress the growth of cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号