首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   13篇
  2021年   3篇
  2018年   4篇
  2017年   4篇
  2016年   1篇
  2015年   1篇
  2014年   14篇
  2013年   9篇
  2012年   6篇
  2011年   9篇
  2010年   6篇
  2009年   7篇
  2008年   7篇
  2007年   11篇
  2006年   6篇
  2005年   7篇
  2004年   13篇
  2003年   4篇
  2002年   9篇
  2001年   6篇
  2000年   6篇
  1999年   8篇
  1997年   5篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   6篇
  1988年   2篇
  1987年   4篇
  1986年   7篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1981年   4篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1974年   2篇
  1972年   1篇
  1970年   2篇
  1969年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有202条查询结果,搜索用时 15 毫秒
41.
Membrane traffic plays a crucial role in delivering proteins and lipids to their intracellular destinations. We previously identified α-taxilin as a binding partner of the syntaxin family, which is involved in intracellular vesicle traffic. α-Taxilin is overexpressed in tumor tissues and interacts with polymerized tubulin, but the precise function of α-taxilin remains unclear. Receptor proteins on the plasma membrane are internalized, delivered to early endosomes and then either sorted to the lysosome for degradation or recycled back to the plasma membrane. In this study, we found that knockdown of α-taxilin induced the lysosomal degradation of transferrin receptor (TfnR), a well-known receptor which is generally recycled back to the plasma membrane after internalization, and impeded the recycling of transferrin. α-Taxilin was immunoprecipitated with sorting nexin 4 (SNX4), which is involved in the recycling of TfnR. Furthermore, knockdown of α-taxilin decreased the number and length of SNX4-positive tubular structures. We report for the first time that α-taxilin interacts with SNX4 and plays a role in the recycling pathway of TfnR.  相似文献   
42.
The gain of function mutation JAK2-V617F is very frequently found in myeloproliferative neoplasms (MPNs) and is strongly implicated in pathogenesis of these and other hematological malignancies. Here we report establishment of a new leukemia cell line, PVTL-1, homozygous for JAK2-V617F from a 73-year-old female patient with acute myeloid leukemia (AML) transformed from MPN. PVTL-1 is positive for CD7, CD13, CD33, CD34, CD117, HLA-DR, and MPO, and has complex karyotypic abnormalities, 44,XX,-5q,-7,-8,add(11)(p11.2),add(11)(q23),−16,+21,−22,+mar1. Sequence analysis of JAK2 revealed only the mutated allele coding for Jak2-V617F. Proliferation of PVTL-1 was inhibited and apoptosis was induced by the pan-Jak inhibitor Jak inhibitor-1 (JakI-1) or dasatinib, which inhibits the Src family kinases as well as BCR/ABL. Consistently, the Src family kinase Lyn was constitutively activated with phosphorylation of Y396 in the activation loop, which was inhibited by dasatinib but not by JakI-1. Further analyses with JakI-1 and dasatinib indicated that Jak2-V617F phosphorylated STAT5 and SHP2 while Lyn phosphorylated SHP1, SHP2, Gab-2, c-Cbl, and CrkL to induce the SHP2/Gab2 and c-Cbl/CrkL complex formation. In addition, JakI-1 and dasatinib inactivated the mTOR/p70S6K/4EBP1 pathway and reduced the inhibitory phosphorylation of GSK3 in PVTL-1 cells, which correlated with their effects on proliferation and survival of these cells. Furthermore, inhibition of GSK3 by its inhibitor SB216763 mitigated apoptosis induced by dasatinib but not by JakI-1. Together, these data suggest that apoptosis may be suppressed in PVTL-1 cells through inactivation of GSK3 by Lyn as well as Jak2-V617F and additionally through activation of STAT5 by Jak2-V617F. It is also speculated that activation of the mTOR/p70S6K/4EBP1 pathway may mediate proliferation signaling from Jak2-V617F and Lyn. PVTL-1 cells may provide a valuable model system to elucidate the molecular mechanisms involved in evolution of Jak2-V617F-expressing MPN to AML and to develop novel therapies against this intractable condition.  相似文献   
43.

Aims

Vector flow mapping (VFM) can be used to assess intraventricular hemodynamics quantitatively. This study assessed the magnitude of the suction flow kinetic energy with VFM and investigated the relation between left ventricular (LV) function and geometry in patients with an estimated elevated LV filling pressure.

Materials and methods

We studied 24 subjects with an elevated LV filling pressure (EFP group) and 36 normal subjects (normal group). Suction was defined as flow directed toward the apex during the period from soon after systolic ejection to before mitral inflow. The flow kinetic energy index was quantified as the sum of the product of the blood mass and velocity vector and its magnitude to the peak value was measured.

Key findings

Suction flow was observed in 12 (50%) EFP-group patients and 36 (100%) normal-group subjects. The magnitude of the suction kinetic energy index was significantly smaller in EFP versus normal group (2.7 ± 3.8 vs. 5.7 ± 4.4 g/s/cm2, P < 0.01). The EFP-group patients with suction had a smaller LV end-systolic volume (ESV) (P < 0.01), greater ellipsoidal geometry (P < 0.05) and untwisting rate (P < 0.01) than the EFP-group patients without suction. A regression analysis indicated a significant linear relation between the suction kinetic energy index and LVEF (r = 0.43, P = 0.04), ESV (r = − 0.40, P = 0.05), eccentricity index (r = 0.44, P = 0.04), and untwisting rate (r = 0.51, P = 0.04).

Significance

The magnitude of the suction flow kinetic energy index derived from VFM may allow the quantitative assessment of the suction flow, which correlates with LV systolic function, geometry, and untwisting mechanics.  相似文献   
44.
S. Nogami  Y. Satow  Y. Ohya    Y. Anraku 《Genetics》1997,147(1):73-85
Protein splicing is a compelling chemical reaction in which two proteins are produced posttranslationally from a single precursor polypeptide by excision of the internal protein segment and ligation of the flanking regions. This unique autocatalytic reaction was first discovered in the yeast Vma1p protozyme where the 50-kD site-specific endonuclease (VDE) is excised from the 120-kD precursor containing the N-and C-terminal regions of the catalytic subunit of the vacuolar H(+)-ATPase. In this work, we randomized the conserved valine triplet residues three amino acids upstream of the C-terminal splicing junction in the Vma1 protozyme and found that these site-specific random mutations interfere with normal protein splicing to different extents. Intragenic suppressor analysis has revealed that this particular hydrophobic triplet preceding the C-terminal splicing junction genetically interacts with three hydrophobic residues preceding the N-terminal splicing junction. This is the first evidence showing that the N-terminal portion of the V-ATPase subunit is involved in protein splicing. Our genetic evidence is consistent with a structural model that correctly aligns two parallel β-strands ascribed to the triplets. This model delineates spatial interactions between the two conserved regions both residing upstream of the splicing junctions.  相似文献   
45.
A complementary DNA encoding DNA-dependent ATPase Q1 possessing DNA helicase activity, which is the major DNA-dependent ATPase in human cell extracts, was cloned from a cDNA library of human KB cells. The predicted amino acid sequence has seven consecutive motifs conserved in the RNA and DNA helicase super family and DNA helicase Q1 belongs to DEXH helicase family. A homology search indicated that helicase Q1 had 47% homology in the seven conserved regions with Escherichia coli RecQ protein. Three RNA bands of 4.0, 3.3, and 2.2 kilobases were detected in HeLa cells by Northern blotting. Analysis of the genomic DNA indicated the presence of a homologous gene in mouse cells. The DNA helicase Q1 gene was localized on the short arm of human chromosome 12 at 12p12.  相似文献   
46.
The soluble N-ethyl maleimide-sensitive factor attachment protein receptor machinery is involved in membrane docking and fusion. In this machinery, the syntaxin family is a central coordinator and participates in multiple protein-protein interactions. In this study we have shown that alpha-fodrin, nonerythroid spectrin, is a new binding partner of the syntaxin family. alpha-Fodrin bound to syntaxin-1a, -3, and -4, all of which are localized on the plasma membrane. Syntaxin-3 interacted with alpha-fodrin in dose-dependent and saturable manners but not with alpha-spectrin, erythroid spectrin. Syntaxin-3 interacted with alpha-fodrin through its C-terminal coiled-coil region. Binding of Munc18 or SNAP-25 to syntaxin-1a inhibited the interaction of alpha-fodrin with syntaxin-1a. Available evidence indicates that alpha-fodrin is implicated in exocytosis, but a precise mode of action of alpha-fodrin in exocytosis remains unclear. Our results suggest that alpha-fodrin regulates exocytosis through the interaction with members of the syntaxin family.  相似文献   
47.
48.
Understanding how social relationships affect long-term stress is important because stress has a profound impact on the welfare of animals and social relationships often exert a strong influence on their stress responses. The purpose of this study was to investigate the relationship between social behaviors and long-term stress levels as assessed by hair cortisol (HC) concentration. The subjects were 11 chimpanzees living in an all-male group (divided into two sub-groups) in Kumamoto Sanctuary, Kyoto University, Japan. Behavioral data were collected between December 2014 and March 2015. The total observation time was 129 h. Hair samples were collected in late March and early April 2015, and cortisol was extracted from the hair and measured with enzyme immunoassay. The hair growth rate was estimated to be 1.33 ± 0.06 cm/month. The results revealed that there was a positive correlation between the rate of receiving aggression and HC levels. We also found a significant negative correlation between the balance between giving and receiving grooming (grooming balance index: GBI), which was calculated by subtracting the rate with which grooming is given from that with which it is received, and the rate of receiving aggression and between the GBI and HC levels. Thus, individuals receiving higher levels of aggression also tended to give grooming for relatively long periods compared to the time they were being groomed. In contrast, the rate of initiating aggression did not have a relationship with either HC levels or any measure of social grooming. We did not find social buffering effects, as there was no correlation between mutual social grooming and HC levels. These results show that not only aggressive interactions but also overall social situations in which animals do not have balanced relationships with others might result in the long-term elevation of cortisol levels in captive male chimpanzees.  相似文献   
49.
Never in mitosis A-related kinase 2A (Nek2A), a centrosomal serine/threonine kinase, is involved in mitotic progression by regulating the centrosome cycle. Particularly, Nek2A is necessary for dissolution of the intercentriole linkage between the duplicated centrosomes prior to mitosis. Nek2A activity roughly parallels its cell cycle-dependent expression levels, but the precise mechanism regulating its activity remains unclear. In this study, we found that γ-taxilin co-localized with Nek2A at the centrosome during interphase and interacted with Nek2A in yeast two-hybrid and pull-down assays and that γ-taxilin regulated centrosome disjunction in a Nek2A-dependent manner. γ-Taxilin depletion increased the number of cells with striking splitting of centrosomes. The precocious splitting of centrosomes induced by γ-taxilin depletion was attenuated by Nek2A depletion, suggesting that γ-taxilin depletion induces the Nek2A-mediated dissolution of the intercentriole linkage between the duplicated centrosomes nevertheless mitosis does not yet begin. Taken together with the result that γ-taxilin protein expression levels were decreased at the onset of mitosis, we propose that γ-taxilin participates in Nek2A-mediated centrosome disjunction as a negative regulator through its interaction with Nek2A.  相似文献   
50.
Capnocytophaga canimorsus and Capnocytophaga cynodegmi, both commensal bacteria in the oral cavities of dogs and cats, are zoonotic pathogens. In particular, C. canimorsus causes sepsis and fatal septic shock. Recently, a novel Capnocytophaga species, C. canis, was isolated from the oral cavities of healthy dogs. It is reportedly oxidase‐negative and therefore considered avirulent in humans. In the present study, three strains of C. canis were isolated from Japanese patients with sepsis. All three strains, HP20001, HP33001 and HP40001, were oxidase‐positive. Nucleotide sequence identities of the 16S rRNA gene of the three strains to the C. canimorsus type strain ATCC35979, C. cynodegmi type strain ATCC49044 and C. canis type strain LMG29146 were 96.9–97.0%, 96.9–97.0% and 99.7–99.8%, respectively. Multi‐locus sequence analysis based on seven house‐keeping genes, dnaJ, fumC, glyA, gyrB, murG, trpB and tuf, revealed that the oxidase‐positive C. canis strains isolated in Japan and oxidase‐negative strains of C. canis from canine oral cavities in Switzerland were clustered in different genetic subgroups. These results indicate that the virulence of C. canis strains in humans is associated with oxidase activity.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号