首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   12篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   4篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   6篇
  2013年   5篇
  2012年   12篇
  2011年   5篇
  2010年   3篇
  2009年   4篇
  2008年   5篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   5篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1995年   2篇
  1988年   1篇
  1984年   1篇
  1981年   2篇
排序方式: 共有83条查询结果,搜索用时 31 毫秒
21.
22.
23.
24.
25.
Pseudobulweria is one of the least known and most endangered of all seabird genera. It comprises six taxa, of which two are extinct, three are critically endangered and one is near threatened. Phylogenetic relationships between these taxa and position of the genus in the Order Procellariiformes have never been studied, and the taxonomic status of several taxa remains unsettled. Conservation management of Pseudobulweria taxa will be enhanced if these uncertainties are resolved. We used a multilocus gene tree approach with two mitochondrial DNA markers (cytochrome oxidase subunit 1 and cytochrome b gene) and one nuclear intron (β Fibrinogen intron 7) to investigate phylogenetic relationships within the genus using sequences from all taxa. We combined gene trees to estimate a phylogeny of the genus using a multispecies coalescent methodology. We confirmed the link between Pseudobulweria and a clade comprising Puffinus and Bulweria genera. The Fiji petrel’s status, as belonging to the genus, is confirmed, as is the specific status of newly rediscovered Beck’s petrel. Maintenance of the two sub-species of Tahiti petrel as currently described is not supported. Discovering the breeding grounds of all taxa is the key for their conservation, which is vital to both the marine and fragile insular tropical ecosystems where Pseudobulweria are apical predators.  相似文献   
26.
Boyd SE  Nair B  Ng SW  Keith JM  Orian JM 《PloS one》2012,7(3):e33565
Glial fibrillary acidic protein (GFAP) is an intermediate filament (IF) protein specific to central nervous system (CNS) astrocytes. It has been the subject of intense interest due to its association with neurodegenerative diseases, and because of growing evidence that IF proteins not only modulate cellular structure, but also cellular function. Moreover, GFAP has a family of splicing isoforms apparently more complex than that of other CNS IF proteins, consistent with it possessing a range of functional and structural roles. The gene consists of 9 exons, and to date all isoforms associated with 3' end splicing have been identified from modifications within intron 7, resulting in the generation of exon 7a (GFAPδ/ε) and 7b (GFAPκ). To better understand the nature and functional significance of variation in this region, we used a Bayesian multiple change-point approach to identify conserved regions. This is the first successful application of this method to a single gene--it has previously only been used in whole-genome analyses. We identified several highly or moderately conserved regions throughout the intron 7/7a/7b regions, including untranslated regions and regulatory features, consistent with the biology of GFAP. Several putative unconfirmed features were also identified, including a possible new isoform. We then integrated multiple computational analyses on both the DNA and protein sequences from the mouse, rat and human, showing that the major isoform, GFAPα, has highly conserved structure and features across the three species, whereas the minor isoforms GFAPδ/ε and GFAPκ have low conservation of structure and features at the distal 3' end, both relative to each other and relative to GFAPα. The overall picture suggests distinct and tightly regulated functions for the 3' end isoforms, consistent with complex astrocyte biology. The results illustrate a computational approach for characterising splicing isoform families, using both DNA and protein sequences.  相似文献   
27.
28.
ATP binding cassette (ABC) transporters are a diverse superfamily of energy-dependent membrane translocases. Although responsible for the majority of transmembrane transport in bacteria, they are relatively uncommon in eukaryotic mitochondria. Organellar trafficking and import, in addition to quaternary structure assembly, of mitochondrial ABC transporters is poorly understood and may offer explanations for the paucity of their diversity. Here we examine these processes in ABCB10 (ABC-me), a mitochondrial inner membrane erythroid transporter involved in heme biosynthesis. We report that ABCB10 possesses an unusually long 105-amino acid mitochondrial targeting presequence (mTP). The central subdomain of the mTP (amino acids (aa) 36-70) is sufficient for mitochondrial import of enhanced green fluorescent protein. The N-terminal subdomain (aa 1-35) of the mTP, although not necessary for the trafficking of ABCB10 to mitochondria, participates in the proper import of the molecule into the inner membrane. We performed a series of amino acid mutations aimed at changing specific properties of the mTP. The mTP requires neither arginine residues nor predictable alpha-helices for efficient mitochondrial targeting. Disruption of its hydrophobic character by the mutation L46Q/I47Q, however, greatly diminishes its efficacy. This mutation can be rescued by cryptic downstream (aa 106-715) mitochondrial targeting signals, highlighting the redundancy of this protein's targeting qualities. Mass spectrometry analysis of chemically cross-linked, immunoprecipitated ABCB10 indicates that ABCB10 embedded in the mitochondrial inner membrane homodimerizes and homo-oligomerizes. A deletion mutant of ABCB10 that lacks its mTP efficiently targets to the endoplasmic reticulum. Quaternary structure assembly of ABCB10 in the ER appears to be similar to that in the mitochondria.  相似文献   
29.
Activation of the microglial neurotoxic response by components of the senile plaque plays a critical role in the pathophysiology of Alzheimer's disease (AD). Microglia induce neurodegeneration primarily by secreting nitric oxide (NO), tumor necrosis factor- (TNF), and hydrogen peroxide. Central to the activation of microglia is the membrane receptor CD40, which is the target of costimulators such as interferon- (IFN). Chromogranin A (CGA) is a recently identified endogenous component of the neurodegenerative plaques of AD and Parkinson's disease. CGA stimulates microglial secretion of NO and TNF, resulting in both neuronal and microglial apoptosis. Using electrochemical recording from primary rat microglial cells in culture, we have shown in the present study that CGA alone induces a fast-initiating oxidative burst in microglia. We compared the potency of CGA with that of -amyloid (A) under identical conditions and found that CGA induces 5–7 times greater NO and TNF secretion. Coapplication of CGA with A or with IFN resulted in a synergistic effect on NO and TNF secretion. CD40 expression was induced by CGA and was further increased when A or IFN was added in combination. Tyrphostin A1 (TyrA1), which inhibits the CD40 cascade, exerted a dose-dependent inhibition of the CGA effect alone and in combination with IFN and A. Furthermore, CGA-induced mitochondrial depolarization, which precedes microglial apoptosis, was fully blocked in the presence of TyrA1. Our results demonstrate the involvement of CGA with other components of the senile plaque and raise the possibility that a narrowly acting agent such as TyrA1 attenuates plaque formation. Alzheimer's disease; oxidative burst; apoptosis; nitric oxide; tyrphostin A1  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号