首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   686篇
  免费   96篇
  国内免费   2篇
  2022年   4篇
  2021年   20篇
  2020年   9篇
  2019年   13篇
  2018年   9篇
  2017年   8篇
  2016年   14篇
  2015年   19篇
  2014年   31篇
  2013年   38篇
  2012年   54篇
  2011年   49篇
  2010年   32篇
  2009年   27篇
  2008年   36篇
  2007年   35篇
  2006年   28篇
  2005年   38篇
  2004年   39篇
  2003年   25篇
  2002年   33篇
  2001年   15篇
  2000年   11篇
  1999年   24篇
  1998年   15篇
  1997年   7篇
  1996年   9篇
  1995年   11篇
  1994年   5篇
  1993年   9篇
  1992年   9篇
  1991年   15篇
  1990年   10篇
  1989年   7篇
  1988年   11篇
  1987年   5篇
  1986年   8篇
  1985年   7篇
  1984年   6篇
  1983年   6篇
  1982年   8篇
  1981年   3篇
  1979年   5篇
  1978年   3篇
  1977年   5篇
  1971年   1篇
  1969年   1篇
  1963年   1篇
  1951年   1篇
  1944年   1篇
排序方式: 共有784条查询结果,搜索用时 125 毫秒
691.
Group II introns are ribozymes that catalyze a splicing reaction with the same chemical steps as spliceosome-mediated splicing. Many group II introns have lost the capacity to self-splice while acquiring compensatory interactions with host-derived protein cofactors. Degenerate group II introns are particularly abundant in the organellar genomes of plants, where their requirement for nuclear-encoded splicing factors provides a means for the integration of nuclear and organellar functions. We present a biochemical analysis of the interactions between a nuclear-encoded group II splicing factor and its chloroplast intron target. The maize (Zea mays) protein Chloroplast RNA Splicing 1 (CRS1) is required specifically for the splicing of the group II intron in the chloroplast atpF gene and belongs to a plant-specific protein family defined by a recently recognized RNA binding domain, the CRM domain. We show that CRS1's specificity for the atpF intron in vivo can be explained by CRS1's intrinsic RNA binding properties. CRS1 binds in vitro with high affinity and specificity to atpF intron RNA and does so through the recognition of elements in intron domains I and IV. These binding sites are not conserved in other group II introns, accounting for CRS1's intron specificity. In the absence of CRS1, the atpF intron has little uniform tertiary structure even at elevated [Mg2+]. CRS1 binding reorganizes the RNA, such that intron elements expected to be at the catalytic core become less accessible to solvent. We conclude that CRS1 promotes the folding of its group II intron target through tight and specific interactions with two peripheral intron segments.  相似文献   
692.
We analyzed the amino acid composition of different categories of proteins of the moderately halophilic bacterium Chromohalobacter salexigens, as deduced from its genome sequence. Comparison with non-halophilic representatives of the -Proteobacteria (Escherichia coli, Pseudomonas aeruginosa, Vibrio cholerae) shows only a slight excess of acidic residues in the cytoplasmic proteins, and no significant differences were found in the acidity of membrane-bound proteins. In contrast, a very pronounced difference in mean pI value was observed for the periplasmic binding proteins of the ABC transport systems of C. salexigens and the non-halophiles E. coli and P. aeruginosa. V. cholerae, which is adapted to life in brackish water, showed intermediate values. The findings suggest that there is a major difference between the proteins of the moderate halophile C. salexigens and non-halophilic bacteria in their periplasmic proteins, exemplified by the substrate binding proteins of transport systems. The highly acidic nature of these proteins may enable them to function at high salt concentrations. The evolution of highly salt-tolerant prokaryotes may have depended on an increase in acidity of the proteins located external to the cytoplasmic membrane, enabling effective transport of nutrients into the cell.  相似文献   
693.
Ramon Y  Shoshani O  Peled IJ  Gilhar A  Carmi N  Fodor L  Risin Y  Ullmann Y 《Plastic and reconstructive surgery》2005,115(1):197-201; discsussion 202-3
Injection of aspirated fat for the correction of tissue defects is a common procedure in plastic surgery. The reported rates of fat cell survival vary greatly in the medical literature, and different techniques of harvesting, processing, and reinjecting the fat cells are claimed to be responsible for these differences. However, there is no agreement concerning the best way to process the harvested fat before reinjection. The present study was initiated to examine and evaluate the effect of a simple method of isolating the fat particles on the outcome of fat graft survival. In this study, the nude mouse model was used to examine the survival and take of the fat graft concentrated before injection by the cumbersome recommended closed centrifugation technique in comparison with the authors' recommended open method, using an operating room cotton towel as a platform for concentrating the fat cells and separating them from fluids, oil, and debris. One milliliter of concentrated human fat cells preprocessed by towel separation was injected into the nuchal subcutis of 11 nude mice in the study group, and the same amount of fat that was preprocessed by centrifugation was injected into 11 control mice. Injected fat survived in both groups. No significant differences were found regarding fat graft weight and volume, although a tendency for better survival was noticed in the experimental group. Histologic evaluation of the grafts revealed significantly less fibrosis within the study group, meaning that the quality of the fat grafts was better. The authors found this method to be simple, cheap, and friendly to the surgeon in comparison with traditional processing using the centrifuge.  相似文献   
694.
695.
The two CRYs of the butterfly   总被引:2,自引:0,他引:2  
  相似文献   
696.
Antibacterial factors (ABFs) are secreted polypeptides that have an important role in the innate immune system of nematodes. Comparison of these polypeptides revealed similarity in bioactivity, protein sequence and 3D structure, suggesting that they originated from a common ancestor. Comparison of gene organization of nematode ABF genes revealed that all except one contain a Phase 0 intron at a conserved location. The intron phase and location are congruent with the postulated intron gain rules, suggesting a gain of intron before duplication and divergence of the ancestral gene. Although nematode ABFs display similarity in activity and structure to invertebrate (arthropod and mollusk) defensins, lack of sequence similarity and the different genomic organization suggest that these two polypeptide families exhibit convergent evolution.  相似文献   
697.
Rosenberg OS  Deindl S  Sung RJ  Nairn AC  Kuriyan J 《Cell》2005,123(5):849-860
Ca2+/calmodulin-dependent protein kinase-II (CaMKII) is unique among protein kinases for its dodecameric assembly and its complex response to Ca2+. The crystal structure of the autoinhibited kinase domain of CaMKII, determined at 1.8 A resolution, reveals an unexpected dimeric organization in which the calmodulin-responsive regulatory segments form a coiled-coil strut that blocks peptide and ATP binding to the otherwise intrinsically active kinase domains. A threonine residue in the regulatory segment, which when phosphorylated renders CaMKII calmodulin independent, is held apart from the catalytic sites by the organization of the dimer. This ensures a strict Ca2+ dependence for initial activation. The structure of the kinase dimer, when combined with small-angle X-ray scattering data for the holoenzyme, suggests that inactive CaMKII forms tightly packed autoinhibited assemblies that convert upon activation into clusters of loosely tethered and independent kinase domains.  相似文献   
698.
Schuldiner O  Shor S  Benvenisty N 《Gene》2002,285(1-2):91-99
Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disease caused by the expansion of a polyglutamine tract in the protein ataxin-7, a protein of unknown function. In order to analyze the expression pattern of wild type ataxin-7 in detail, the murine SCA7 gene homolog was cloned and the expression pattern in mice analyzed. The SCA7 mouse and human gene exhibit a high degree of identity at both DNA (88.2%) and protein (88.7%) level. The CAG repeat region, known to be polymorphic in man, is conserved in mouse but contained only five repeats in all mouse strains analyzed. The arrestin homology domain and the nuclear localization signal found in human ataxin-7 is also conserved in the murine homolog. Expression of ataxin-7 was detected during mouse embryonic development and in all adult mouse tissues examined by northern and western blots. In brain, immunohistological staining revealed an ataxin-7 expression pattern similar to that in human, with ataxin-7 expression in cerebellum, several brainstem nuclei, cerebral cortex and hippocampus. Our data show high conservation of ataxin-7 both structurally and at the level of expression, suggesting a conserved role for the protein in mice and humans.  相似文献   
699.
Werner syndrome is a rare autosomal recessive disorder involving the premature appearance of features reminiscent of human aging. Werner syndrome occurs by mutation of the WRN gene, encoding a DNA helicase. WRN contributes to the induction of the p53 tumor suppressor protein by various DNA damaging agents. Here we show that UV exposure leads to extensive translocation of WRN from the nucleolus to nucleoplasmic foci in a dose-dependent manner. Ionizing radiation also induces WRN translocation, albeit milder, partially through activation of the ATM kinase. The nucleoplasmic foci to which WRN is recruited display partial colocalization with PML nuclear bodies. The translocation of WRN into nucleoplasmic foci is significantly enhanced by the protein deacetylase inhibitor, Trichostatin A. Moreover, Trichostatin A delays the re-entry of WRN into the nucleolus at late times after irradiation. WRN is acetylated in vivo, and this is markedly stimulated by the acetyltransferase p300. Importantly, p300 augments the translocation of WRN into nucleoplasmic foci. These findings support the notion that WRN plays a role in the cellular response to DNA damage and suggest that the activity of WRN is modulated by DNA damage-induced post-translational modifications of WRN and possibly WRN-interacting proteins.  相似文献   
700.
A variety of filamentous fungi have recently been isolated from the Dead Sea (340 g/L total dissolved salts). To assess the extent to which such fungi can survive for prolonged periods in Dead Sea water, we examined the survival of both spores and mycelia in undiluted Dead Sea water and in Dead Sea water diluted to different degrees with distilled water. Mycelia of Aspergillus versicolor and Chaetomium globosum strains isolated from the Dead Sea remained viable for up to 8 weeks in undiluted Dead Sea water. Four Dead Sea isolates (A. versicolor, Eurotium herbariorum, Gymnascella marismortui, and C. globosum) retained their viability in Dead Sea water diluted to 80% during the 12 weeks of the experiment. Mycelia of all species survived for the full term of the experiment in Dead Sea water diluted to 50% and 10% of its original salinity. Comparison of the survival of Dead Sea species and closely related isolates obtained from other locations showed prolonged viability of the strains obtained from the Dead Sea. Spores of isolates obtained from the terrestrial shore of the Dead Sea generally proved less tolerant to suspension in undiluted Dead Sea water than spores of species isolated from the water column. Spores of the species isolated from the control sites had lost their viability in undiluted Dead Sea water within 12 weeks. However, with the exception of Emericella spores, which showed poor survival, a substantial fraction of the spores of Dead Sea fungal isolates remained viable for that period. The difference in survival rate between spores and mycelia of isolates of the same species points to the existence of adapted halotolerant and/or halophilic fungi in the Dead Sea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号