首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   742篇
  免费   100篇
  国内免费   2篇
  2022年   4篇
  2021年   21篇
  2020年   9篇
  2019年   14篇
  2018年   9篇
  2017年   9篇
  2016年   15篇
  2015年   21篇
  2014年   33篇
  2013年   41篇
  2012年   60篇
  2011年   54篇
  2010年   36篇
  2009年   26篇
  2008年   39篇
  2007年   40篇
  2006年   29篇
  2005年   39篇
  2004年   40篇
  2003年   28篇
  2002年   34篇
  2001年   16篇
  2000年   13篇
  1999年   29篇
  1998年   15篇
  1997年   8篇
  1996年   11篇
  1995年   10篇
  1994年   5篇
  1993年   10篇
  1992年   10篇
  1991年   14篇
  1990年   11篇
  1989年   7篇
  1988年   11篇
  1987年   5篇
  1986年   9篇
  1985年   7篇
  1984年   6篇
  1983年   6篇
  1982年   8篇
  1981年   3篇
  1979年   5篇
  1978年   3篇
  1977年   7篇
  1974年   2篇
  1973年   3篇
  1963年   1篇
  1951年   1篇
  1944年   1篇
排序方式: 共有844条查询结果,搜索用时 31 毫秒
61.
Temperate and boreal forest ecosystems contain a large part of the carbon stored on land, in the form of both biomass and soil organic matter. Increasing atmospheric [CO2], increasing temperature, elevated nitrogen deposition and intensified management will change this C store. Well documented single-factor responses of net primary production are: higher photosynthetic rate (the main [CO2] response); increasing length of growing season (the main temperature response); and higher leaf-area index (the main N deposition and partly [CO2] response). Soil organic matter will increase with increasing litter input, although priming may decrease the soil C stock initially, but litter quality effects should be minimal (response to [CO2], N deposition, and temperature); will decrease because of increasing temperature; and will increase because of retardation of decomposition with N deposition, although the rate of decomposition of high-quality litter can be increased and that of low-quality litter decreased. Single-factor responses can be misleading because of interactions between factors, in particular those between N and other factors, and indirect effects such as increased N availability from temperature-induced decomposition. In the long term the strength of feedbacks, for example the increasing demand for N from increased growth, will dominate over short-term responses to single factors. However, management has considerable potential for controlling the C store.  相似文献   
62.
The activity of NK cells is regulated by activating receptors that recognize mainly stress-induced ligands and by inhibitory receptors that recognize mostly MHC class I proteins on target cells. Comparing the cytoplasmic tail sequences of various MHC class I proteins revealed the presence of unique cysteine residues in some of the MHC class I molecules which are absent in others. To study the role of these unique cysteines, we performed site specific mutagenesis, generating MHC class I molecules lacking these cysteines, and demonstrated that their expression on the cell surface was impaired. Surprisingly, we demonstrated that these cysteines are crucial for the surface binding of the leukocyte Ig-like receptor 1 inhibitory receptor to the MHC class I proteins, but not for the binding of the KIR2DL1 inhibitory receptor. In addition, we demonstrated that the cysteine residues in the cytoplasmic tail of MHC class I proteins are crucial for their egress from the endoplasmic reticulum and for their palmitoylation, thus probably affecting their expression on the cell surface. Finally, we show that the cysteine residues are important for proper extracellular conformation. Thus, although the interaction between leukocyte Ig-like receptor 1 and MHC class I proteins is formed between two extracellular surfaces, the intracellular components of MHC class I proteins play a crucial role in this recognition.  相似文献   
63.
Comparative biology: beyond sequence analysis   总被引:2,自引:0,他引:2  
Comparative analysis is a fundamental tool in biology. Conservation among species greatly assists the detection and characterization of functional elements, whereas inter-species differences are probably the best indicators of biological adaptation. Traditionally, comparative approaches were applied to the analysis of genomic sequences. With the growing availability of functional genomic data, comparative paradigms are now being extended also to the study of other functional attributes, most notably the gene expression. Here we review recent works applying comparative analysis to large-scale gene expression datasets and discuss the central principles and challenges of such approaches.  相似文献   
64.
Derived from any somatic cell type and possessing unlimited self-renewal and differentiation potential, induced pluripotent stem cells (iPSCs) are poised to revolutionize stem cell biology and regenerative medicine research, bringing unprecedented opportunities for treating debilitating human diseases. To overcome the limitations associated with safety, efficiency, and scalability of traditional iPSC derivation, expansion, and differentiation protocols, biomaterials have recently been considered. Beyond addressing these limitations, the integration of biomaterials with existing iPSC culture platforms could offer additional opportunities to better probe the biology and control the behavior of iPSCs or their progeny in vitro and in vivo. Herein, we discuss the impact of biomaterials on the iPSC field, from derivation to tissue regeneration and modeling. Although still exploratory, we envision the emerging combination of biomaterials and iPSCs will be critical in the successful application of iPSCs and their progeny for research and clinical translation.  相似文献   
65.
66.
67.
The correlations between skeletal parameters (bulk density, micro-density and porosity), coral age and sea surface temperature were assessed along a latitudinal gradient in the zooxanthellate coral Balanophyllia europaea and in the azooxanthellate coral Leptopsammia pruvoti. In both coral species, the variation of bulk density was more influenced by the variation of porosity than of micro-density. With increasing polyp age, B. europaea formed denser and less porous skeletons while L. pruvoti showed the opposite trend, becoming less dense and more porous. B. europaea skeletons were generally less porous (more dense) than those of L. pruvoti, probably as a consequence of the different habitats colonized by the two species. Increasing temperature had a negative impact on the zooxanthellate species, leading to an increase of porosity. In contrast, micro-density increased with temperature in the azooxanthellate species. It is hypothesized that the increase in porosity with increasing temperatures observed in B. europaea could depend on an attenuation of calcification due to an inhibition of the photosynthetic process at elevated temperatures, while the azooxanthellate species appears more resistant to variations of temperature, highlighting possible differences in the sensitivity/tolerance of these two coral species to temperature changes in face of global climate change.  相似文献   
68.
Pyrazinamide (PZA), an essential component of short-course anti-tuberculosis chemotherapy, was shown by Saturation Transfer Difference (STD) NMR methods to act as a competitive inhibitor of NADPH binding to purified Mycobacterium tuberculosis fatty acid synthase I (FAS I). Both PZA and pyrazinoic acid (POA) reversibly bind to FAS I but at different binding sites. The competitive binding of PZA and NADPH suggests potential FAS I binding sites. POA was not previously known to have any specific binding interactions. The STD NMR of NADPH bound to the mycobacterial FAS I was consistent with the orientation reported in published single crystal X-ray diffraction studies of fungal FAS I. Overall the differences in binding between PZA and POA are consistent with previous recognition of the importance of intracellular accumulation of POA for anti-mycobacterial activity.  相似文献   
69.
70.
Chronic kidney disease (CKD) is a progressive loss in renal function over a period of months or years. End-stage renal disease (ESRD) or stage 5 CKD ensues when renal function deteriorates to under 15% of the normal range. ESRD requires either dialysis or, preferentially, a kidney organ allograft, which is severely limited due to organ shortage for transplantation. To combat this situation, one needs to either increase supply of organs or decrease their demand. Two strategies therefore exist: for those that have completely lost their kidney function (ESRD), we will need to supply new kidneys. Taking into account the kidneys' extremely complex structure, this may prove to be impossible in the near future. In contrast, for those patients that are in the slow progression route from CKD to ESRD but still have functional kidneys, we might be able to halt progression by introducing stem cell therapy to diseased kidneys to rejuvenate or regenerate individual cell types. Multiple cell compartments that fall into three categories are likely to be worthy targets for cell repair: vessels, stroma (interstitium) and nephron epithelia. Different stem/progenitor cells can be linked to regeneration of specific cell types; hematopoietic progenitors and hemangioblastic cell types have specific effects on the vascular niche (vasculogenesis and angiogenesis). Multipotent stromal cells (MSC), whether derived from the bone marrow or isolated from the kidney's non-tubular compartment, may, in turn, heal nephron epithelia via paracrine mechanisms. Nevertheless, as we now know that all of the above lack nephrogenic potential, we should continue our quest to derive genuine nephron (epithelial) progenitors from differentiated pluripotent stem cells, from fetal and adult kidneys and from directly reprogrammed somatic cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号