首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   17篇
  2022年   1篇
  2021年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   7篇
  2011年   3篇
  2010年   7篇
  2009年   8篇
  2008年   3篇
  2007年   8篇
  2006年   7篇
  2005年   7篇
  2004年   6篇
  2003年   6篇
  2002年   5篇
  2001年   5篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   5篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   5篇
  1986年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1976年   1篇
  1975年   5篇
  1974年   1篇
  1973年   2篇
  1970年   1篇
  1968年   1篇
  1966年   2篇
  1965年   2篇
  1963年   1篇
  1961年   2篇
  1960年   1篇
  1958年   1篇
  1956年   1篇
  1944年   1篇
  1941年   1篇
排序方式: 共有140条查询结果,搜索用时 31 毫秒
31.
Replication of bacteriophage Mu DNA, a process requiring efficient synapsis of the prophage ends, takes place within the confines of the Escherichia coli nucleoid. Critical to ensuring rapid synapsis is the function of the SGS, a strong gyrase site, located at the centre of the Mu genome. Replacement of the SGS by the strong gyrase sites from pSC101 or pBR322 fails to support efficient prophage replication. To probe the unique SGS properties we undertook a biochemical analysis of the interaction of DNA gyrase with the Mu SGS, pSC101 and pBR322 sites. In binding and cleavage assays the order of efficacy was pSC101 > Mu SGS > pBR322. However, in supercoiling assays the Mu SGS (cloned into pUC19) exhibited a strong enhancement of gyrase-catalysed supercoiling over pUC19 alone; the pSC101 site showed none and the pBR322 site gave a moderate improvement. Most striking was the Mu SGS-dependent increase in processivity of the gyrase reaction. This highly processive supercoiling coupled with efficient binding may account for the unique biological properties of the SGS. The results emphasize the importance of the DNA substrate as an active component in modulating the gyrase supercoiling reaction, and in determining the biological roles of specialized gyrase sites.  相似文献   
32.
ABCA1. The gatekeeper for eliminating excess tissue cholesterol   总被引:38,自引:0,他引:38  
It is widely believed that HDL functions to transport cholesterol from peripheral cells to the liver by reverse cholesterol transport, a pathway that may protect against atherosclerosis by clearing excess cholesterol from arterial cells. A cellular ATP-binding cassette transporter (ABC) called ABCA1 mediates the first step of reverse cholesterol transport: the transfer of cellular cholesterol and phospholipids to lipid-poor apolipoproteins. Mutations in ABCA1 cause Tangier disease (TD), a severe HDL deficiency syndrome characterized by accumulation of cholesterol in tissue macrophages and prevalent atherosclerosis. Studies of TD heterozygotes revealed that ABCA1 activity is a major determinant of plasma HDL levels and susceptibility to CVD. Drugs that induce ABCA1 in mice increase clearance of cholesterol from tissues and inhibit intestinal absorption of dietary cholesterol. Multiple factors related to lipid metabolism and other processes modulate expression and tissue distribution of ABCA1.Therefore, as the primary gatekeeper for eliminating tissue cholesterol, ABCA1 has a major impact on cellular and whole body cholesterol metabolism and is likely to play an important role in protecting against cardiovascular disease.  相似文献   
33.
34.
35.
High-density lipoproteins (HDLs) play a role in transporting cholesterol from peripheral tissues to the liver for elimination from the body. Two hallmarks of cardiovascular disease are the presence of sterol-laden macrophages in the artery wall and reduced plasma HDL levels. A cell-membrane protein called ABCA1 mediates the secretion of excess cholesterol from cells into the HDL metabolic pathway. Mutations in ABCA1 cause Tangier disease, a severe HDL deficiency syndrome characterized by accumulation of cholesterol in tissue macrophages and prevalent atherosclerosis. Because of its ability to deplete macrophages of cholesterol and to raise plasma HDL levels, ABCA1 has become a promising therapeutic target for preventing cardiovascular disease.  相似文献   
36.

Background

Little is known about the extent to which being a victim of domestic violence is associated with different mental disorders in men and women. We aimed to estimate the prevalence and odds of being a victim of domestic violence by diagnostic category and sex.

Methods

Study design: Systematic review and meta-analysis. Data Sources: Eighteen biomedical and social sciences databases (including MEDLINE, EMBASE, PsycINFO); journal hand searches; scrutiny of references and citation tracking of included articles; expert recommendations, and an update of a systematic review on victimisation and mental disorder. Inclusion criteria: observational and intervention studies reporting prevalence or odds of being a victim of domestic violence in men and women (aged ≥16 years), using validated diagnostic measures of mental disorder. Procedure: Data were extracted and study quality independently appraised by two reviewers. Analysis: Random effects meta-analyses were used to pool estimates of prevalence and odds.

Results

Forty-one studies were included. There is a higher risk of experiencing adult lifetime partner violence among women with depressive disorders (OR 2.77 (95% CI 1.96–3.92), anxiety disorders (OR 4.08 (95% CI 2.39–6.97), and PTSD (OR 7.34 95% CI 4.50–11.98), compared to women without mental disorders. Insufficient data were available to calculate pooled odds for other mental disorders, family violence (i.e. violence perpetrated by a non-partner), or violence experienced by men. Individual studies reported increased odds for women and men for all diagnostic categories, including psychoses, with a higher prevalence reported for women. Few longitudinal studies were found so the direction of causality could not be investigated.

Conclusions

There is a high prevalence and increased likelihood of being a victim of domestic violence in men and women across all diagnostic categories, compared to people without disorders. Longitudinal studies are needed to identify pathways to being a victim of domestic violence to optimise healthcare responses.  相似文献   
37.
Phospholipid lipid transfer protein (PLTP) mimics high-density lipoprotein apolipoproteins in removing cholesterol and phospholipids from cells through the ATP-binding cassette transporter A1 (ABCA1). Because amphipathic alpha-helices are the structural determinants for ABCA1 interactions, we examined the ability of synthetic peptides corresponding to helices in PLTP to remove cellular cholesterol by the ABCA1 pathway. Of the seven helices tested, only one containing PLTP residues 144-163 (p144), located at the tip of the N-terminal barrel, promoted ABCA1-dependent cholesterol efflux and stabilized ABCA1 protein. Mutating methionine 159 (Met-159) in this helix in PLTP to aspartate (M159D) or glutamate (M159E) nearly abolished the ability of PLTP to remove cellular cholesterol and dramatically reduced PLTP binding to phospholipid vesicles and its phospholipid transfer activity. These mutations impaired PLTP binding to ABCA1-generated lipid domains and PLTP-mediated stabilization of ABCA1 but increased PLTP binding to ABCA1. PLTP interactions with ABCA1 also mimicked apolipoproteins in activating Janus kinase 2; however, the M159D/E mutants were also able to activate this kinase. Structural analyses showed that the M159D/E mutations had only minor effects on PLTP conformation. These findings indicate that PLTP helix 144-163 is critical for removing lipid domains formed by ABCA1, stabilizing ABCA1 protein, interacting with phospholipids, and promoting phospholipid transfer. Direct interactions with ABCA1 and activation of signaling pathways likely involve other structural determinants of PLTP.  相似文献   
38.
39.
The interaction of high density lipoproteins (HDL) with the HDL receptor stimulates the translocation of cholesterol from intracellular pools to the plasma membrane where the cholesterol becomes available for removal by appropriate acceptors. The role of signal transduction through protein kinase C in HDL receptor-dependent cholesterol translocation and efflux was examined using cholesterol-loaded cultured human skin fibroblasts. Treatment of cells with HDL3 activated protein kinase C, demonstrated by a transient increase in membrane associated kinase activity. Kinase activation appeared to be dependent on binding of HDL3 to the HDL receptor, since tetranitromethane-modified HDL3, which does not bind to the receptor, was without effect. Translocation of intracellular sterol to the plasma membrane was stimulated by treatment of cells with the protein kinase C activators, dioctanoylglycerol and phorbol myristic acetate, and the calcium ionophore A23187. Conversely, treatment of cells with sphingosine, a protein kinase C inhibitor, reduced HDL3-mediated translocation and efflux of intracellular sterols. However, sphingosine had no effect on efflux of labeled cholesterol derived from the plasma membrane. Down-regulation of cellular protein kinase C activity by long term incubation with phorbol esters also inhibited HDL3-mediated efflux of intracellular sterols and abolished the ability of sphingosine to further inhibit HDL3-mediated efflux. These studies support the conclusion that HDL receptor-mediated translocation and efflux of intracellular cholesterol occurs through activation of protein kinase C.  相似文献   
40.
Binding of high density lipoprotein (HDL) to its receptor on cultured fibroblasts and aortic endothelial cells was previously shown to facilitate sterol efflux by initiation of translocation of intracellular sterol to the plasma membrane. After cholesterol-loaded human monocyte-derived macrophages were incubated with either [3H]mevalonolactone or lipoprotein-associated [3H]cholesteryl ester to radiolabel intracellular pools of sterol, incubation with HDL3 led to stimulation of 3H-labeled sterol translocation from intracellular sites to the cell surface which preceeded maximum 3H-labeled sterol efflux. A similar pattern was demonstrated for macrophages that were preloaded with cholesterol derived from either low density lipoprotein (LDL), acetyl-LDL, or phospholipase C-modified LDL. However, in macrophages that were not loaded with cholesterol, HDL3 stimulated net movement of 3H-labeled sterol from the plasma membrane into intracellular compartments, the opposite direction from that seen for cholesterol-loaded cells. A similar influx pattern was found in nonloaded macrophages and fibroblasts that were labeled with trace amounts of exogenous [3H]cholesterol. Cholesterol translocation from intracellular pools to the cell surface of cholesterol-loaded macrophages appeared to be stimulated by receptor binding of HDL, since chemical modification of HDL with tetranitromethane (TNM), which abolishes its receptor binding, reduced its ability to stimulate 3H-labeled sterol translocation and efflux. In nonloaded cells, however, the ability of HDL3 to stimulate sterol efflux and movement of sterol from the plasma membrane into intracellular pools was unaffected by TNM modification. Thus, binding of HDL to its receptor on cholesterol-loaded macrophages appears to promote translocation of intracellular cholesterol to the plasma membrane followed by cholesterol efflux into the medium. However, in nonloaded macrophages, HDL stimulates sterol movement from the plasma membrane into intracellular pools by a receptor-independent process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号