The mechanisms underlying early islet graft failure are not entirely clear, but are thought to involve ischemic injury due to delayed vascularization. We hypothesize that blood vessels play an active role in cell-cell communications supporting islet survival and engraftment. To test this hypothesis and to uncouple endothelial cell (EC)-generated signaling stimuli from their nutritional and gas exchange functions, we developed three dimensional (3D) endothelial vessel networks in engineered pancreatic tissues prepared from islets, fibroblasts and ECs. The tri-culture setup, seeded on highly porous biocompatible polymeric scaffolds closely mimics the natural anatomical context of pancreatic vasculature. Enhanced islet survival correlating with formation of functional tube-like endothelial vessels was demonstrated. Addition of foreskin fibroblasts to islet-endothelial cultures promoted tube-like structure formation, which further supported islet survival as well as insulin secretion. Gene expression profiles of EC growth factors, extracellular matrix (ECM), morphogenes and differentiation markers were significantly different in 2D versus 3D culture systems and were further modified upon addition of fibroblasts. Implantation of prevascularized islets into diabetic mice promoted survival, integration and function of the engrafted engineered tissue, supporting the suggested role of ECs in islet survival. These findings present potential strategies for preparation of transplantable islets with increased survival prospects. 相似文献
Most genes change expression levels across conditions, but it is unclear which of these changes represents specific regulation and what determines their quantitative degree. Here, we accurately measured activities of ~900 S. cerevisiae and ~1800 E. coli promoters using fluorescent reporters. We show that in both organisms 60–90% of promoters change their expression between conditions by a constant global scaling factor that depends only on the conditions and not on the promoter's identity. Quantifying such global effects allows precise characterization of specific regulation—promoters deviating from the global scale line. These are organized into few functionally related groups that also adhere to scale lines and preserve their relative activities across conditions. Thus, only several scaling factors suffice to accurately describe genome‐wide expression profiles across conditions. We present a parameter‐free passive resource allocation model that quantitatively accounts for the global scaling factors. It suggests that many changes in expression across conditions result from global effects and not specific regulation, and provides means for quantitative interpretation of expression profiles. 相似文献
A new mathematical model was developed for the kinetics of α-, β- and γ-cyclodextrin production, expanding an existing model that only included the production of β- and γ-cyclodextrins, because a detailed kinetic modelling of the reactions involved allows the manipulation of the process yields. The kinetic behaviour of the commercial enzyme Toruzyme® was studied with maltodextrin as substrate at different concentrations and for CGTase from Bacillus firmus strain 37 at a concentration of 100 g L−1. The mathematical model showed a proper fit to the experimental data, within the 24-h period studied, confirming that the considered hypotheses represent the kinetic behaviour of the enzymes in the reaction medium. The kinetic parameters generated by the model allowed reproducing previous observed qualitative tendencies as it can be seen that changing experimental conditions in the reaction process such as enzyme and substrate concentrations results in large changes in the enzyme kinetics and using high substrate concentrations does not guarantee the highest conversion rates due to enzyme inhibition and reverse reactions. In addition, this new mathematical model complements previous qualitative observations enabling the manipulation of the direct and reverse reactions catalysed by the enzyme by adjusting the reaction conditions, to target quantitative results of increased productivity and better efficiency in the production of a desired cyclodextrin.
Protease activity is tightly regulated in both normal and disease conditions. However, it is often difficult to monitor the dynamic nature of this regulation in the context of a live cell or whole organism. To address this limitation, we developed a series of quenched activity-based probes (qABPs) that become fluorescent upon activity-dependent covalent modification of a protease target. These reagents freely penetrate cells and allow direct imaging of protease activity in living cells. Targeted proteases are directly identified and monitored biochemically by virtue of the resulting covalent tag, thereby allowing unambiguous assignment of protease activities observed in imaging studies. We report here the design and synthesis of a selective, cell-permeable qABP for the study of papain-family cysteine proteases. This probe is used to monitor real-time protease activity in live human cells with fluorescence microscopy techniques as well as standard biochemical methods. 相似文献
Nonindigenous species may exert strong effects on ecosystem structure and function. The zebra mussel (Dreissena polymorpha) has been attributed with profound changes in invaded ecosystems across eastern North America. We explored vertical profiles
of water flow velocity and chlorophyll a concentration in western Lake Erie, over rocky substrates encrusted with Dreissena, to assess the extent to which mussels influence coupling between benthic and pelagic regions of the lake. Flow velocity
was always low at surveyed sites (less than or equal to 2.9 cm s-1) and declined in direct proximity to the lakebed. Mean chlorophyll a concentration was also low (less than 5μg L-1) at all sites and depths. Chlorophyll a concentration was positively correlated with distance above lakebed and was lowest (0.3μg L-1) directly adjacent to the lakebed. Spatial patterns of zooplankton grazers could not explain observed vertical gradients
in chlorophyll concentration. Hydrodynamic modeling revealed that filtering effects of Dreissena in a nonstratified, shallow basin depend mainly on upstream chlorophyll concentration, intensity of turbulent diffusion,
feeding efficiency of the mussel colony, and the distance downstream from the leading edge of the mussel colony. In contrast
to widespread perceptions that molluscs reduce phytoplankton concentration only adjacent to the lakebed, modeling scenarios
indicated that depletion occurs throughout the water column. Depletion was, however, inversely proportional to distance above
the lakebed. Simulation results are consistent with field-based observations made in shallow water habitats populated by large
Dreissena populations in the Great Lakes and elsewhere. Results from this study indicate that zebra mussels strongly enhance coupling
between pelagic and benthic regions in shallow lakes. Enhanced coupling between these regions explains, in part, high population
densities of Dreissena and of many benthic invertebrates in ecosystems invaded by zebra mussels.
Received 14 July 1998; accepted 25 March 1999. 相似文献
Transport of essentially all matrix and a number of inner membrane proteins is governed, entirely or in part, by N-terminal presequences and requires a coordinated action of the translocases of outer and inner mitochondrial membranes (TOM and TIM23 complexes). Here, we have analyzed Tim50, a subunit of the TIM23 complex that is implicated in transfer of precursors from TOM to TIM23. Tim50 is recruited to the TIM23 complex via Tim23 in an interaction that is essentially independent of the rest of the translocase. We find Tim50 in close proximity to the intermembrane space side of the TOM complex where it recognizes both types of TIM23 substrates, those that are to be transported into the matrix and those destined to the inner membrane, suggesting that Tim50 recognizes presequences. This function of Tim50 depends on its association with TIM23. We conclude that the efficient transfer of precursors between TOM and TIM23 complexes requires the concerted action of Tim50 with Tim23. 相似文献
Homeobox genes are essential regulators of plant development. ATHB23, a class I homeodomain leucine zipper gene of Arabidopsis, was found to be induced by treatment with the phytohormone gibberellin (GA). In order to clarify its role in development, we performed a histochemical analysis of transgenic plants containing a construct with a GUS::GFP reporter under the control of the 1.5 kb upstream region of ATHB23. The construct was mainly expressed in young leaves and the styles of flowers but not in mature leaves. Microscopic examination of young leaves revealed that it was expressed in the adaxial domain of leaf primordia and the rib meristem. Expression of ATHB23, like that of GA5 encoding GA 20-oxidase, was reduced in mutants related to adaxial-abaxial leaf polarity (phb-1d, se-2, and kan1 kan2). Reduced expression of the GUS::GFP reporter gene was also observed in an se-2 background. These results indicate that ATHB23 is under the control of GA and other activators such as PHB, and is involved in establishing polarity during leaf development. 相似文献
Ischemic cardiac damage is associated with upregulation of cardiac pro-inflammatory cytokines, as well as invasion of lymphocytes into the heart. Regulatory T cells (Tregs) are known to exert a suppressive effect on several immune cell types. We sought to determine whether the Treg pool is influenced by myocardial damage and whether Tregs transfer and deletion affect cardiac remodeling.
Methods and Results
The number and functional suppressive activity of Tregs were assayed in mice subjected to experimental myocardial infarction. The numbers of splenocyte-derived Tregs in the ischemic mice were significantly higher after the injury than in the controls, and their suppressive properties were significantly compromised. Compared with PBS, adoptive Treg transfer to mice with experimental infarction reduced infarct size and improved LV remodeling and functional performance by echocardiography. Treg deletion with blocking anti-CD25 antibodies did not influence infarct size or echocardiographic features of cardiac remodeling.
Conclusion
Treg numbers are increased whereas their function is compromised in mice with that underwent experimental infarction. Transfer of exogeneous Tregs results in attenuation of myocardial remodeling whereas their ablation has no effect. Thus, Tregs may serve as interesting potential interventional targets for attenuating left ventricular remodeling. 相似文献