首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   18篇
  141篇
  2015年   3篇
  2014年   5篇
  2013年   4篇
  2012年   6篇
  2011年   5篇
  2010年   2篇
  2009年   6篇
  2008年   3篇
  2007年   4篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   4篇
  1999年   6篇
  1998年   6篇
  1997年   5篇
  1996年   2篇
  1995年   5篇
  1994年   4篇
  1993年   2篇
  1992年   3篇
  1991年   7篇
  1990年   5篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   6篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1977年   3篇
  1975年   3篇
  1974年   2篇
  1972年   1篇
  1960年   1篇
排序方式: 共有141条查询结果,搜索用时 0 毫秒
11.

Background  

Homologous recombination mediated by the λ-Red genes is a common method for making chromosomal modifications in Escherichia coli. Several protocols have been developed that differ in the mechanisms by which DNA, carrying regions homologous to the chromosome, are delivered into the cell. A common technique is to electroporate linear DNA fragments into cells. Alternatively, DNA fragments are generated in vivo by digestion of a donor plasmid with a nuclease that does not cleave the host genome. In both cases the λ-Red gene products recombine homologous regions carried on the linear DNA fragments with the chromosome. We have successfully used both techniques to generate chromosomal mutations in E. coli K-12 strains. However, we have had limited success with these λ-Red based recombination techniques in pathogenic E. coli strains, which has led us to develop an enhanced protocol for recombineering in such strains.  相似文献   
12.
Numerous studies have illustrated the need for antioxidant enzymes in acquired photosynthetic thermotolerance, but information on their possible role in promoting innate thermotolerance is lacking. We investigated the hypothesis that genotypic differences in source leaf photosynthetic thermostability would be dependent upon prestress capacity for antioxidant protection of the photosynthetic apparatus in Gossypium hirsutum. To test this hypothesis, thermosensitive (cv. ST4554) and reportedly thermotolerant (cv. VH260) G. hirsutum plants were exposed to control (30/20°C) or high‐day temperature (38/20°C) conditions during flowering and source leaf gas exchange, chlorophyll content and maximum photochemical efficiency (Fv/Fm) were measured for each treatment. The relationship between source leaf thermostability and prestress antioxidant capacity was quantified by monitoring the actual quantum yield response of photosystem II (PSII) (ΦPSII) to a range of temperatures for both cultivars grown under the control temperature regime and measuring antioxidant enzyme activity for those same leaves. VH260 was more thermotolerant than ST4554 as evidenced by photosynthesis and Fv/Fm being significantly lower under high temperature for ST4554 but not VH260. Under identical growth conditions, VH260 had significantly higher optimal and threshold temperatures for ΦPSII and glutathione reductase (GR; EC 1.8.1.7) activity than ST4554, and innate threshold temperature was dependent upon endogenous GR and superoxide dismutase (SOD; EC 1.15.1.1) activity. We conclude that maintaining a sufficient antioxidant enzyme pool prior to heat stress is an innate mechanism for coping with rapid leaf temperature increases that commonly occur under field conditions.  相似文献   
13.
Juvenile idiopathic arthritis (JIA) is the most common cause of chronic childhood disability and encompasses a number of disease subgroups. In this study we have focused on systemic JIA (sJIA), which accounts for approximately 11% of UK JIA cases. This study reports the investigation of three members of the IL10 gene family as candidate susceptibility loci in children with sJIA. DNA from 473 unaffected controls and 172 patients with sJIA was genotyped for a single nucleotide polymorphism (SNP) in IL19 and IL20 and two SNPs in IL10. We examined evidence for association of the four SNPs by single marker and haplotype analysis. Significant differences in allele frequency were observed between cases and controls, for both IL10-1082 (p = 0.031) and IL20-468 (p = 0.028). Furthermore, examination of the haplotypes of IL10-1082 and IL20-468 revealed greater evidence for association (global p = 0.0006). This study demonstrates a significant increased prevalence of the low expressing IL10-1082 genotype in patients with sJIA. In addition, we show a separate association with an IL20 polymorphism, and the IL10-1082A/IL20-468T haplotype. The two marker 'A-T' haplotype confers an odds ratio of 2.24 for sJIA. This positive association suggests an important role for these cytokines in sJIA pathogenesis.  相似文献   
14.
Triple-negative breast cancer (TNBC) represents an aggressive subtype, for which radiation and chemotherapy are the only options. Here we describe the identification of disulfiram, an FDA-approved drug used to treat alcoholism, as well as the related compound thiram, as the most potent growth inhibitors following high-throughput screens of 3185 compounds against multiple TNBC cell lines. The average IC50 for disulfiram was ~300 nM. Drug affinity responsive target stability (DARTS) analysis identified IQ motif-containing factors IQGAP1 and MYH9 as direct binding targets of disulfiram. Indeed, knockdown of these factors reduced, though did not completely abolish, cell growth. Combination treatment with 4 different drugs commonly used to treat TNBC revealed that disulfiram synergizes most effectively with doxorubicin to inhibit cell growth of TNBC cells. Disulfiram and doxorubicin cooperated to induce cell death as well as cellular senescence, and targeted the ESA+/CD24-/low/CD44+ cancer stem cell population. Our results suggest that disulfiram may be repurposed to treat TNBC in combination with doxorubicin.  相似文献   
15.
As uncontrolled cell proliferation requires nucleotide biosynthesis, inhibiting enzymes that mediate nucleotide biosynthesis constitutes a rational approach to the management of oncological diseases. In practice, however, results of this strategy are mixed and thus elucidation of the mechanisms by which cancer cells evade the effect of nucleotide biosynthesis restriction is urgently needed. Here we explored the notion that intrinsic differences in cancer cell cycle velocity are important in the resistance toward inhibition of inosine monophosphate dehydrogenase (IMPDH) by mycophenolic acid (MPA). In short-term experiments, MPA treatment of fast-growing cancer cells effectively elicited G0/G1 arrest and provoked apoptosis, thus inhibiting cell proliferation and colony formation. Forced expression of a mutated IMPDH2, lacking a binding site for MPA but retaining enzymatic activity, resulted in complete resistance of cancer cells to MPA. In nude mice subcutaneously engrafted with HeLa cells, MPA moderately delayed tumor formation by inhibiting cell proliferation and inducing apoptosis. Importantly, we developed a lentiviral vector–based Tet-on label-retaining system that enables to identify, isolate and functionally characterize slow-cycling or so-called label-retaining cells (LRCs) in vitro and in vivo. We surprisingly found the presence of LRCs in fast-growing tumors. LRCs were superior in colony formation, tumor initiation and resistance to MPA as compared with fast-cycling cells. Thus, the slow-cycling compartment of cancer seems predominantly responsible for resistance to MPA.  相似文献   
16.
Patients with Disorders of Sex Development (DSD), especially those with gonadal dysgenesis and hypovirilization are at risk of developing malignant type II germ cell tumors/cancer (GCC) (seminoma/dysgerminoma and nonseminoma), with either carcinoma in situ (CIS) or gonadoblastoma (GB) as precursor lesion. In 10-15% of 46,XY gonadal dysgenesis cases (i.e., Swyer syndrome), SRY mutations, residing in the HMG (High Mobility Group) domain, are found to affect nuclear transport or binding to and bending of DNA. Frasier syndrome (FS) is characterized by gonadal dysgenesis with a high risk for development of GB as well as chronic renal failure in early adulthood, and is known to arise from a splice site mutation in intron 9 of the Wilms' tumor 1 gene (WT1). Mutations in SRY as well as WT1 can lead to diminished expression and function of SRY, resulting in sub-optimal SOX9 expression, Sertoli cell formation and subsequent lack of proper testicular development. Embryonic germ cells residing in this unfavourable micro-environment have an increased risk for malignant transformation. Here a unique case of a phenotypically normal female (age 22 years) is reported, presenting with primary amenorrhoea, later diagnosed as hypergonadotropic hypogonadism on the basis of 46,XY gonadal dygenesis with a novel missense mutation in SRY. Functional in vitro studies showed no convincing protein malfunctioning. Laparoscopic examination revealed streak ovaries and a normal, but small, uterus. Pathological examination demonstrated bilateral GB and dysgerminoma, confirmed by immunohistochemistry. Occurrence of a delayed progressive kidney failure (focal segmental glomerular sclerosis) triggered analysis of WT1, revealing a pathogenic splice-site mutation in intron 9. Analysis of the SRY gene in an additional five FS cases did not reveal any mutations. The case presented shows the importance of multi-gene based diagnosis of DSD patients, allowing early diagnosis and treatment, thus preventing putative development of an invasive cancer.  相似文献   
17.
Immune response of mice exposed to cis-diamminedichloroplatinum   总被引:3,自引:0,他引:3  
Summary The effects of cis-diamminedichloroplatinum (CDDP) on lymphoid organs and the immune response of young and older adult mice were studied histologically and by functionally assessing the activity of various subpopulations of immune cells. Young adult mice (6–8 weeks old) treated with 2 mg/kg CDDP mounted an enhanced splenic plaque-forming cell (PFC) response to both sheep erythrocytes, a helper T-cell-dependent antigen (HD), and pneumococcal polysaccharide type III a helper T-cell-independent antigen (HI). Older adult mice (18–22 weeks old) treated in the same way exhibited an equally enhanced PFC response to HD antigen and even a more pronounced response to HI antigen. Treatment of mice with 12 mg/kg CDDP resulted in immunosuppression. Thymus, lymph nodes, and spleen of animals treated with the higher dose of CDDP showed a marked cell depletion from both T and B areas, confirming that the immunosuppression was due to an indiscriminate elimination of both T and B lymphocytes. The immunosuppression and the cell depletion from lymphoid organs were more pronounced in younger mice. Thus, the effects of CDDP on the lymphoid organs and the immune response depend both on the age of the animals and on the dose of the drug. CDDP given in small doses enhances the PFC response, whereas a reduced PFC response is obtained following high-dose treatment. Abbreviations used: CDDP, cis-diamminedichloroplatinum; PFC, plaque-forming cell; HD, helper T-cell dependent; HI, helper T cell-independent; SIII, pneumococcal polysaccharide type III; SRBC, sheep red blood cells; TNP, trinitrophenyl; KLH, keyhole limpet hemocyanin; TNBS, 2, 4, 6-trinitrobenzene sulfonic acid; BBS, borate-buffered saline  相似文献   
18.
Field studies were conducted to investigate ontogenic changes in leaf photosynthesis and chloroplast ultrastructure of a single cotton (Gossypium hirsutum L.) leaf subtending the fruit. A 20-d old leaf was the most physiologically active with net photosynthetic rate (PN) of 16.5 mol m-2 s-1 and nitrogen (N) concentration of 168 mmol m-2. These values declined with leaf age and a close relationship existed between them. Concurrent with declines in PN, ultrastructural alterations occurred in the chloroplast: the 20-d old leaf had increased grana number and thylakoids per granum and a few plastoglobuli. Afterwards, the grana number and thylakoids per granum declined with leaf age indicating disintegrated grana and stroma lamellae. Concomitant with disintegrated membrane system was the presence of numerous large plastoglobuli. The PN was closely related to grana number and thylakoids per granum suggesting that the decline in PN with leaf age was associated with ultrastructural changes in the chloroplast.  相似文献   
19.
20.
The gas exchange properties of whole plant canopies are an integral part of crop productivity and have attracted much attention in recent years. However, insufficient information exists on the coordination of transpiration and CO2 uptake for individual leaves during the growing season. Single-leaf determinations of net photosynthesis (Pn), transpiration (E) and water use efficiency (WUE) for field-grown cotton (Gossypium hirsutum L.) leaves were recorded during a 2-year field study. Measurements were made at 3 to 4 day intervals on the main-stem and first three sympodial leaves at main-stem node 10 from their unfolding through senescence. Results indicated that all gas exchange parameters changed with individual main-stem and sympodial leaf age. Values of Pn, E and WUE followed a rise and fall pattern with maximum rates achieved at a leaf age of 18 to 20 days. While no significant position effects were observed for Pn, main-stem and sympodial leaves did differ in E and WUE particularly as leaves aged beyond 40 days. For a given leaf age, the main-stem leaf had a significantly lower WUE than the three sympodial leaves. WUE's for the main-stem and three sympodial leaves between the ages of 41 to 50 days were 0.85, 1.30, 1.36 and 1.95 μmol CO2 mmol−1 H2O, respectively. The mechanisms which mediated leaf positional differences for WUE were not strictly related to changes in stomatal conductance (gs·H2O) since decreases in gs·H2O with leaf age were similar for the four leaves. However, significantly different radiant environments with distance along the fruiting branch did indicate the possible involvement of mutual leaf shading in determining WUE. The significance of these findings are presented in relation to light competition within the plant canopy during development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号