首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   10篇
  110篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   7篇
  2013年   7篇
  2012年   4篇
  2011年   10篇
  2010年   7篇
  2009年   1篇
  2008年   10篇
  2007年   4篇
  2006年   4篇
  2005年   7篇
  2004年   5篇
  2003年   10篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1989年   2篇
  1987年   3篇
  1981年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有110条查询结果,搜索用时 0 毫秒
1.
2.
Deep tissue injury (DTI) is a severe form of pressure ulcer where tissue damage starts in deep tissues underneath intact skin. Tissue deformation may play an important role in the aetiology, which can be investigated using an experimental–numerical approach. Recently, an animal-specific finite element model has been developed to simulate experiments in which muscle tissue was compressed with an indenter. In this study, the material behaviour and boundary conditions were adapted to improve the agreement between model and experiment and to investigate the influence of these adaptations on the predicted strain distribution. The use of a highly nonlinear material law and including friction between the indenter and the muscle both improved the quality of the model and considerably influenced the estimated strain distribution. With the improved model, the required sample size to detect significant differences between loading conditions can be diminished, which is clearly relevant in experiments involving animals.  相似文献   
3.
Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory infection in infants and young children and causes disease in the elderly and persons with compromised cardiac, pulmonary, or immune systems. Despite the high morbidity rates of RSV infection, no highly effective treatment or vaccine is yet available. The RSV G protein is an important contributor to the disease process. A conserved CX3C chemokine-like motif in G likely contributes to the pathogenesis of disease. Through this motif, G protein binds to CX3CR1 present on various immune cells and affects immune responses to RSV, as has been shown in the mouse model of RSV infection. However, very little is known of the role of RSV CX3C-CX3CR1 interactions in human disease. In this study, we use an in vitro model of human RSV infection comprised of human peripheral blood mononuclear cells (PBMCs) separated by a permeable membrane from human airway epithelial cells (A549) infected with RSV with either an intact CX3C motif (CX3C) or a mutated motif (CX4C). We show that the CX4C virus induces higher levels of type I/III interferon (IFN) in A549 cells, increased IFN-α and tumor necrosis factor alpha (TNF-α) production by human plasmacytoid dendritic cells (pDCs) and monocytes, and increased IFN-γ production in effector/memory T cell subpopulations. Treatment of CX3C virus-infected cells with the F(ab′)2 form of an anti-G monoclonal antibody (MAb) that blocks binding to CX3CR1 gave results similar to those with the CX4C virus. Our data suggest that the RSV G protein CX3C motif impairs innate and adaptive human immune responses and may be important to vaccine and antiviral drug development.  相似文献   
4.
A rat model was used to distinguish between the different factors that contribute to muscle tissue damage related to deep pressure ulcers that develop after compressive loading. The separate and combined effects of ischemia and deformation were studied. Loading was applied to the hindlimb of rats for 2 h. Muscle tissue was examined using MR imaging (MRI) and histology. An MR-compatible loading device allowed simultaneous loading and measurement of tissue status. Two separate loading protocols incorporated uniaxial loading, resulting in tissue compression and ischemic loading. Uniaxial loading was applied to the tibialis anterior by means of an indenter, and ischemic loading was accomplished with an inflatable tourniquet. Deformation of the muscle tissue during uniaxial loading was measured using MR tagging. Compression of the tissues for 2 h led to increased T2 values, which were correlated to necrotic regions in the tibialis anterior. Perfusion measurements, by means of contrast-enhanced MRI, indicated a large ischemic region during indentation. Pure ischemic loading for 2 h led to reversible tissue changes. From the MR-tagging experiments, local strain fields were calculated. A 4.5-mm deformation, corresponding to a surface pressure of 150 kPa, resulted in maximum shear strain up to 1.0. There was a good correlation between the location of damage and the location of high shear strain. It was concluded that the large deformations, in conjunction with ischemia, provided the main trigger for irreversible muscle damage.  相似文献   
5.
Skeletal muscle tissue is highly susceptible to sustained compressive straining, eventually leading to tissue breakdown in the form of pressure sores. This breakdown begins at the cellular level and is believed to be triggered by sustained cell deformation. To study the relationship between compressive strain-induced muscle cell deformation and damage, and to investigate the role of cell-cell interactions, cell-matrix interactions and tissue geometry in this process, in vitro models of single cells, monolayers and 3D tissue analogs under compression are being developed. Compression is induced using specially designed loading devices, while cell deformation is visualised with confocal microscopy. Cell damage is assessed from viability tests, vital microscopy and histological or biochemical analyses. Preliminary results from a 3D cell seeded agarose model indicate that cell deformation is indeed an important trigger for cell damage; sustained compression of the model at 20% strain results in a significant increase in cell damage with time of compression, whereas damage in unstrained controls remains constant over time.  相似文献   
6.
This article gives an overview of anthropological research on bioprospecting in general and of available literature related to bioprospecting particularly in South Africa. It points out how new insights on value regimes concerning plant-based medicines may be gained through further research and is meant to contribute to a critical discussion about the ethics of Access and Benefit Sharing (ABS). In South Africa, traditional healers, plant gatherers, petty traders, researchers and private investors are assembled around the issues of standardization and commercialization of knowledge about plants. This coincides with a nation-building project which promotes the revitalization of local knowledge within the so called African Renaissance. A social science analysis of the transformation of so called Traditional Medicine (TM) may shed light onto this renaissance by tracing social arenas in which different regimes of value are brought into conflict. When medicinal plants turn into assets in a national and global economy, they seem to be manipulated and transformed in relation to their capacity to promote health, their market value, and their potential to construct new ethics of development. In this context, the translation of socially and culturally situated local knowledge about muthi into global pharmaceuticals creates new forms of agency as well as new power differentials between the different actors involved.  相似文献   
7.
Mechanical loading of soft tissues covering bony prominences can cause skeletal muscle damage, ultimately resulting in a severe pressure ulcer termed deep tissue injury (DTI). Deformation plays an important role in the aetiology of DTI. Therefore, it is essential to minimise internal muscle deformations in subjects at risk of DTI. As an example, spinal cord-injured (SCI) individuals exhibit structural changes leading to a decrease in muscle thickness and stiffness, which subsequently increase the tissue deformations. In the present study, an animal-specific finite element model, where the geometry and boundary conditions were derived from magnetic resonance images, was developed. It was used to investigate the internal deformations in the muscle, fat and skin layers of the porcine buttocks during loading. The model indicated the presence of large deformations in both the muscle and the fat layers, with maximum shear strains up to 0.65 in muscle tissue and 0.63 in fat. Furthermore, a sensitivity analysis showed that the tissue deformations depend considerably on the relative stiffness values of the different tissues. For example, a change in muscle stiffness had a large effect on the muscle deformations. A 50% decrease in stiffness caused an increase in maximum shear strain from 0.65 to 0.99, whereas a 50% increase in stiffness resulted in a decrease in maximum shear strain from 0.65 to 0.49. These results indicate the importance of restoring tissue properties after SCI, with the use of, for example, electrical stimulation, to prevent the development of DTI.  相似文献   
8.
Pressure distributions at the interface between skin and supporting tissues are used in design of supporting surfaces like beds, wheel chairs, prostheses and in sales brochures to support commercial products. The reasoning behind this is, that equal pressure distributions in the absence of high pressure gradients is assumed to minimise the risk of developing pressure sores. Notwithstanding the difficulty in performing reproducible and accurate pressure measurements, the question arises if the interface pressure distribution is representative of the internal mechanical state of the soft tissues involved. The paper describes a study of the mechanical condition of a supported buttock contact, depending on cushion properties, relative properties of tissue layers and friction. Numerical, mechanical simulations of a buttock on a supporting cushion are described. The ischial tuberosity is modelled as a rigid body, whereas the overlying muscle, fat and skin layers are modelled as a non-linear Ogden material. Material parameters and thickness of the fat layer are varied. Coulomb friction between buttock and cushion is modelled with different values of the friction coefficient. Moreover, the thickness and properties of the cushion are varied. High shear strains are found in the muscle near the bony prominence and the fat layer near the symmetry line. The performed parameter variations lead to large differences in shear strain in the fat layer but relatively small variations in the skeletal muscle. Even with a soft cushion, leading to a high reduction of the interface pressure the deformation of the skeletal muscle near the bone is high enough to form a risk, which is a clear argument that interface pressures alone are not sufficient to evaluate supporting surfaces.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号