首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   8篇
  104篇
  2022年   4篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2016年   2篇
  2015年   5篇
  2014年   9篇
  2013年   5篇
  2012年   8篇
  2011年   1篇
  2010年   6篇
  2009年   3篇
  2008年   1篇
  2007年   4篇
  2006年   3篇
  2005年   7篇
  2004年   7篇
  2003年   2篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1999年   6篇
  1998年   2篇
  1997年   1篇
  1995年   5篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1978年   1篇
排序方式: 共有104条查询结果,搜索用时 0 毫秒
71.
Recent experimental results suggest that the native fold, or topology, plays a primary role in determining the structure of the transition state ensemble, at least for small, fast-folding proteins. To investigate the extent of the topological control of the folding process, we studied the folding of simplified models of five small globular proteins constructed using a Go-like potential to retain the information about the native structures but drastically reduce the energetic frustration and energetic heterogeneity among residue-residue native interactions. By comparing the structure of the transition state ensemble (experimentally determined by Phi-values) and of the intermediates with those obtained using our models, we show that these energetically unfrustrated models can reproduce the global experimentally known features of the transition state ensembles and "en-route" intermediates, at least for the analyzed proteins. This result clearly indicates that, as long as the protein sequence is sufficiently minimally frustrated, topology plays a central role in determining the folding mechanism.  相似文献   
72.
Class I viral fusion proteins are α-helical proteins that facilitate membrane fusion between viral and host membranes through large conformational transitions. Although prefusion and postfusion crystal structures have been solved for many of these proteins, details about how they transition between these states have remained elusive. This work presents the first, to our knowledge, computational survey of transitions between pre- and postfusion configurations for several class I viral fusion proteins using structure-based models to analyze their dynamics. As suggested by their structural similarities, all proteins share common mechanistic features during their transitions that can be characterized by a diffusive rotational search followed by cooperative N- and C-terminal zipping. Instead of predicting a stable spring-loaded intermediate, our model suggests that helical bundle formation is mediated by N- and C-terminal interactions late in the transition. Shared transition features suggest a global mechanism in which fusion is activated by slow protein-core rotation.  相似文献   
73.
A strategy for calculating the tunneling matrix element dependence on the medium intervening between donor and acceptor in specific proteins is described. The scheme is based on prior studies of small molecules and is general enough to allow inclusion of through bond and through space contributions to the electronic tunneling interaction. This strategy should allow the prediction of relative electron transfer rates in a number of proteins. It will therefore serve as a design tool and will be explicitly testable, in contrast with calculations on single molecules. As an example, the method is applied to ruthenated myoglobin and the tunneling matrix elements are estimated. Quantitative improvements of the model are described and effects due to motion of the bridging protein are discussed. The method should be of use for designing target proteins having tailored electron transfer rates for production with site directed mutagenesis. The relevance of the technique to understanding certain photosynthetic reaction center electron transfer rates is discussed.  相似文献   
74.
75.
76.
We study the free energy landscape of the small peptide Met-enkephalin. Our data were obtained from a generalized-ensemble Monte Carlo simulation taking the interactions among all atoms into account. We show that the free energy landscape resembles that of a funnel, indicating that this peptide is a good folder. Our work demonstrates that the energy landscape picture and folding concept, developed in the context of simplified protein models, can also be used to describe the folding in more realistic models.  相似文献   
77.
Purpose/aim: Neuropathic pain following spinal cord injury (SCI) has a tremendous impact on patient’s quality of life, and frequently is the most limiting aspect of the disease. In view of the severity of this condition and the absence of effective treatments, the establishment of a reliable animal model that reproduces neuropathic pain after injury is crucial for a better understanding of the pathophysiology and for the development of new therapeutic strategies. Thus, the objective of the present study was to standardize the traumatic SCI model in relation to neuropathic pain.

Materials and methods: Wistar rats were submitted to SCI of mild intensity (pendulum height 12.5?mm) or moderate intensity (pendulum height 25?mm) using the New York University Impactor equipment. Behavioural assessment was performed during 8 weeks. Thereafter, spinal cords were processed for immunohistochemistry.

Results: The animals of the moderate injury group in comparison with mild injury had a greater motor function deficit, worse mechanical allodynia, and latter bladder recovery; moreover, histological analysis revealed more extensive lesions with lower neuronal population.

Conclusions: Our study suggests that moderate SCI causes a progressive and long-lasting painful condition (at least 8 weeks), in addition to motor impairment, and thus represents a reliable animal model for the study of chronic neuropathic pain after SCI.  相似文献   

78.
Evaluation of immunogenic epitopes for universal vaccine development in the face of ongoing SARS-CoV-2 evolution remains a challenge. Herein, we investigate the genetic and structural conservation of an immunogenically relevant epitope (C662–C671) of spike (S) protein across SARS-CoV-2 variants to determine its potential utility as a broad-spectrum vaccine candidate against coronavirus diseases. Comparative sequence analysis, structural assessment, and molecular dynamics simulations of C662–C671 epitope were performed. Mathematical tools were employed to determine its mutational cost. We found that the amino acid sequence of C662–C671 epitope is entirely conserved across the observed major variants of SARS-CoV-2 in addition to SARS-CoV. Its conformation and accessibility are predicted to be conserved, even in the highly mutated Omicron variant. Costly mutational rate in the context of energy expenditure in genome replication and translation can explain this strict conservation. These observations may herald an approach to developing vaccine candidates for universal protection against emergent variants of coronavirus.  相似文献   
79.
Structural origins of fibrin clot rheology   总被引:9,自引:0,他引:9       下载免费PDF全文
The origins of clot rheological behavior associated with network morphology and factor XIIIa-induced cross-linking were studied in fibrin clots. Network morphology was manipulated by varying the concentrations of fibrinogen, thrombin, and calcium ion, and cross-linking was controlled by a synthetic, active-center inhibitor of FXIIIa. Quantitative measurements of network features (fiber lengths, fiber diameters, and fiber and branching densities) were made by analyzing computerized three-dimensional models constructed from stereo pairs of scanning electron micrographs. Large fiber diameters and lengths were established only when branching was minimal, and increases in fiber length were generally associated with increases in fiber diameter. Junctions at which three fibers joined were the dominant branchpoint type. Viscoelastic properties of the clots were measured with a rheometer and were correlated with structural features of the networks. At constant fibrinogen but varying thrombin and calcium concentrations, maximal rigidities were established in samples (both cross-linked and noncross-linked) which displayed a balance between large fiber sizes and great branching. Clot rigidity was also enhanced by increasing fiber and branchpoint densities at greater fibrinogen concentrations. Network morphology is only minimally altered by the FXIIIa-catalyzed cross-linking reaction, which seems to augment clot rigidity most likely by the stiffening of existing fibers.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号