首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   326篇
  免费   17篇
  2022年   3篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   7篇
  2017年   8篇
  2016年   15篇
  2015年   13篇
  2014年   16篇
  2013年   16篇
  2012年   24篇
  2011年   17篇
  2010年   12篇
  2009年   9篇
  2008年   14篇
  2007年   9篇
  2006年   18篇
  2005年   15篇
  2004年   13篇
  2003年   8篇
  2002年   8篇
  2001年   7篇
  2000年   4篇
  1999年   5篇
  1998年   5篇
  1997年   6篇
  1996年   4篇
  1995年   3篇
  1994年   7篇
  1993年   2篇
  1992年   5篇
  1991年   3篇
  1990年   6篇
  1989年   5篇
  1988年   7篇
  1987年   6篇
  1986年   2篇
  1985年   2篇
  1984年   5篇
  1981年   2篇
  1979年   2篇
  1978年   4篇
  1976年   3篇
  1975年   3篇
  1972年   1篇
  1971年   1篇
  1969年   2篇
  1967年   1篇
  1942年   2篇
  1941年   1篇
排序方式: 共有343条查询结果,搜索用时 31 毫秒
251.
The intraperitoneal administration of several substances (biliverdin, heat-killed bacteria and diatomaceous earth) to rats caused the prompt appearance of a mitotic wave in the liver. Autoradiographic analysis of livers of treated animals showed no evidence of [3H]-thymidine uptake by mitotic hepatocytes. In addition, livers from xenobiotic-treated rats showed a very low thymidine kinase activity, close to that found in normal livers. This excludes the possibility that non-cycling cells move to mitosis through the S phase. The results suggest that mitosis could be derived from a hepatocyte subpopulation arrested in the G2 phase of the cell cycle, which is stimulated to divide by the xenobiotics.  相似文献   
252.
253.
tRNA is the most highly modified class of RNA species, and modifications are found in tRNAs from all organisms that have been examined. Despite their vastly different chemical structures and their presence in different tRNAs, occurring in different locations in tRNA, the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent discoveries have revealed unprecedented complexity in the modification patterns of tRNA, their regulation and function, suggesting that each modified nucleoside in tRNA may have its own specific function. However, in plants, our knowledge on the role of individual tRNA modifications and how they are regulated is very limited. In a genetic screen designed to identify factors regulating disease resistance and activation of defenses in Arabidopsis, we identified SUPPRESSOR OF CSB3 9 (SCS9). Our results reveal SCS9 encodes a tRNA methyltransferase that mediates the 2´-O-ribose methylation of selected tRNA species in the anticodon loop. These SCS9-mediated tRNA modifications enhance during the course of infection with the bacterial pathogen Pseudomonas syringae DC3000, and lack of such tRNA modification, as observed in scs9 mutants, severely compromise plant immunity against the same pathogen without affecting the salicylic acid (SA) signaling pathway which regulates plant immune responses. Our results support a model that gives importance to the control of certain tRNA modifications for mounting an effective immune response in Arabidopsis, and therefore expands the repertoire of molecular components essential for an efficient disease resistance response.  相似文献   
254.
Plant Molecular Biology - Phylogenetic aspects, hotspots of nucleotide divergence, highly divergent genes, and specific RNA editing sites have been identified and characterized in the plastomes of...  相似文献   
255.
Guanosine (GUO) has neuroprotective effects in experimental models of brain diseases involving glutamatergic excitotoxicity in male animals; however, its effects in female animals are poorly understood. Thus, we investigated the influence of gender and GUO treatment in adult male and female Wistar rats submitted to focal permanent cerebral ischemia in the motor cortex brain. Female rats were subdivided into non-estrogenic and estrogenic phase groups by estrous cycle verification. Immediately after surgeries, the ischemic animals were treated with GUO or a saline solution. Open field and elevated plus maze tasks were conducted with ischemic and naïve animals. Cylinder task, immunohistochemistry and infarct volume analyses were conducted only with ischemic animals. Female GUO groups achieved a full recovery of the forelimb symmetry at 28–35 days after the insult, while male GUO groups only partially recovered at 42 days, in the final evaluation. The ischemic insult affected long-term memory habituation to novelty only in female groups. Anxiety-like behavior, astrocyte morphology and infarct volume were not affected. Regardless the estrous cycle, the ischemic injury affected differently female and male animals. Thus, this study points that GUO is a potential neuroprotective compound in experimental stroke and that more studies, considering the estrous cycle, with both genders are recommended in future investigation concerning brain diseases.  相似文献   
256.
Orexigenic neurons expressing agouti-related protein (AgRP) and neuropeptide Y in the arcuate nucleus (ARC) of the hypothalamus are activated in response to dynamic variations in the metabolic state, including exercise. We previously observed that carnitine palmitoyltransferase 1a (CPT1A), a rate-limiting enzyme of mitochondrial fatty acid oxidation, is a key factor in AgRP neurons, modulating whole-body energy balance and fluid homeostasis. However, the effect of CPT1A in AgRP neurons in aged mice and during exercise has not been explored yet. We have evaluated the physical and cognitive capacity of adult and aged mutant male mice lacking Cpt1a in AgRP neurons (Cpt1a KO). Adult Cpt1a KO male mice exhibited enhanced endurance performance, motor coordination, locomotion, and exploration compared with control mice. No changes were observed in anxiety-related behavior, cognition, and muscle strength. Adult Cpt1a KO mice showed a reduction in gastrocnemius and tibialis anterior muscle mass. The cross-sectional area (CSA) of these muscles were smaller than those of control mice displaying a myofiber remodeling from type II to type I fibers. In aged mice, changes in myofiber remodeling were maintained in Cpt1a KO mice, avoiding loss of physical capacity during aging progression. Additionally, aged Cpt1a KO mice revealed better cognitive skills, reduced inflammation, and oxidative stress in the hypothalamus and hippocampus. In conclusion, CPT1A in AgRP neurons appears to modulate health and protects against aging. Future studies are required to clarify whether CPT1A is a potential antiaging candidate for treating diseases affecting memory and physical activity.  相似文献   
257.
The Stroop effect is considered as a standard attentional measure to study conflict resolution in humans. The response of the brain to conflict is supposed to change over time and it is impaired in certain pathological conditions. Neuropsychological Stroop test measures have been complemented with electroencephalography (EEG) techniques to evaluate the mechanisms in the brain that underlie conflict resolution from the age of 20 to 70. To study the changes in EEG activity during life, we recruited a large sample of healthy subjects of different ages that included 90 healthy individuals, divided by age into decade intervals, which performed the Stroop test while recording a 14 channel EEG. The results highlighted an interaction between age and stimulus that was focused on the prefrontal (Alpha and Theta band) and Occipital (Alpha band) areas. We concluded that behavioural Stroop interference is directly influenced by opposing Alpha and Theta activity and evolves across the decades of life.  相似文献   
258.
Neurochemical Research - Methylglyoxal (MG) is a by-product of glycolysis. In pathological conditions, particularly diabetes mellitus, this molecule is unbalanced, causing widespread protein...  相似文献   
259.
Recent reports have demonstrated that a significant proportion of human genes display allelic differential expression (ADE). ADE is associated with phenotypic variability and may contribute to complex genetic diseases. Here, we present a computational analysis of ADE using allele-specific serial analysis of gene expression (SAGE) tags representing 1295 human genes. We identified 472 genes for which unequal representation (>3-fold) of allele-specific SAGE tags was observed in at least one SAGE library, suggesting the occurrence of ADE. For 235 out of these 472 genes, the difference in the expression level between both allele-specific SAGE tags was statistically significant (p < 0.05). Eleven candidate genes were then subjected to experimental validation and ADE was confirmed for 8 out of these 11 genes. Our results suggest that at least 25% of the human genes display ADE and that allele-specific SAGE tags can be efficiently used for the identification of such genes.  相似文献   
260.
In the present study, we developed a cell-based protocol for the identification of drugs able to induce steatosis. The assay measures multiple markers of toxicity in a 96-well plate format using high-content screening (HCS) technology. After treating HepG2 cells with increasing concentrations of the tested compounds, toxicity parameters were analyzed using fluorescent probes: BODIPY493/503 (lipid content), 2',7'-dihydrodichlorofluorescein diacetate (reactive oxygen species [ROS] generation), tetramethyl rhodamine methyl ester (mitochondrial membrane potential), propidium iodide (cell viability), and Hoechst 33342 (nuclei staining). A total of 16 drugs previously reported to induce liver steatosis through different mechanisms (positive controls) and six nonsteatotic compounds (negative controls) were included in the study. All the steatosis-positive compounds significantly increased BODIPY493/503 fluorescence in HepG2 cells, whereas none of the negative controls induced lipid accumulation. In addition to effects on fat levels, increased ROS generation was produced by certain compounds, which could be indicative of increased risk of liver damage. Our results suggest that this in vitro approach is a simple, rapid, and sensitive screening tool for steatosis-inducing drugs. This conclusion should be confirmed by testing a larger number of steatosis-positive and -negative inducers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号