首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   350篇
  免费   22篇
  2023年   4篇
  2022年   9篇
  2021年   18篇
  2020年   12篇
  2019年   5篇
  2018年   18篇
  2017年   7篇
  2016年   14篇
  2015年   11篇
  2014年   12篇
  2013年   22篇
  2012年   36篇
  2011年   38篇
  2010年   16篇
  2009年   10篇
  2008年   41篇
  2007年   35篇
  2006年   11篇
  2005年   22篇
  2004年   5篇
  2003年   6篇
  2002年   2篇
  2001年   4篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1982年   1篇
  1971年   2篇
  1970年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有372条查询结果,搜索用时 46 毫秒
61.
62.
Epidermal omega-O-acylceramides (ω-O-acylCers) are essential components of a competent skin barrier. These unusual sphingolipids with ultralong N-acyl chains contain linoleic acid esterified to the terminal hydroxyl of the N-acyl, the formation of which requires the transacylase activity of patatin-like phospholipase domain containing 1 (PNPLA1). In ichthyosis with dysfunctional PNPLA1, ω-O-acylCer levels are significantly decreased, and ω-hydroxylated Cers (ω-OHCers) accumulate. Here, we explore the role of the linoleate moiety in ω-O-acylCers in the assembly of the skin lipid barrier. Ultrastructural studies of skin samples from neonatal Pnpla1+/+ and Pnpla1-/- mice showed that the linoleate moiety in ω-O-acylCers is essential for lamellar pairing in lamellar bodies, as well as for stratum corneum lipid assembly into the long periodicity lamellar phase. To further study the molecular details of ω-O-acylCer deficiency on skin barrier lipid assembly, we built in vitro lipid models composed of major stratum corneum lipid subclasses containing either ω-O-acylCer (healthy skin model), ω-OHCer (Pnpla1-/- model), or combination of the two. X-ray diffraction, infrared spectroscopy, and permeability studies indicated that ω-OHCers could not substitute for ω-O-acylCers, although in favorable conditions, they form a medium lamellar phase with a 10.8 nm-repeat distance and permeability barrier properties similar to long periodicity lamellar phase. In the absence of ω-O-acylCers, skin lipids were prone to separation into two phases with diminished barrier properties. The models combining ω-OHCers with ω-O-acylCers indicated that accumulation of ω-OHCers does not prevent ω-O-acylCer-driven lamellar stacking. These data suggest that ω-O-acylCer supplementation may be a viable therapeutic option in patients with PNPLA1 deficiency.  相似文献   
63.
Nine potential non-symmetrical xylene-bridged AChE reactivators were synthesized using modifications of currently known synthetic pathways. Their potency to reactivate AChE inhibited by the nerve agent tabun and the insecticide paraoxon together with nine symmetrical xylene-bridged compounds, was tested in vitro. Seven compounds were promising against paraoxon-inhibited AChE. Two compounds were found to be more potent against tabun-inhibited AChE than obidoxime at a concentration applicable in vivo.  相似文献   
64.
Alzheimer’s disease is debilitating neurodegenerative disorder in the elderly. Current therapy relies on administration of acetylcholinesterase inhibitors (AChEIs) -donepezil, rivastigmine, galantamine, and N-methyl-d-aspartate receptor antagonist memantine. However, their therapeutic effect is only short-term and stabilizes cognitive functions for up to 2 years. Given this drawback together with other pathological hallmarks of the disease taken into consideration, novel approaches have recently emerged to better cope with AD onset or its progression. One such strategy implies broadening the biological profile of AChEIs into so-called multi-target directed ligands (MTDLs). In this review article, we made comprehensive literature survey emphasising on donepezil template which was structurally converted into plethora of MTLDs preserving anti-cholinesterase effect and, at the same time, escalating the anti-oxidant potential, which was reported as a crucial role in the pathogenesis of the Alzheimer’s disease.  相似文献   
65.
Several neurodegenerative disorders including Alzheimer’s disease (AD) have been connected with deregulation of casein kinase 1 (CK1) activity. Inhibition of CK1 therefore presents a potential therapeutic strategy against such pathologies. Recently, novel class of CK1-specific inhibitors with N-(benzo[d]thiazol-2-yl)-2-phenylacetamide structural scaffold has been discovered. 1-(benzo[d]thiazol-2-yl)-3-phenylureas, on the other hand, are known inhibitors amyloid-beta binding alcohol dehydrogenase (ABAD), an enzyme also involved in pathophysiology of AD. Based on their tight structural similarity, we decided to evaluate series of previously published benzothiazolylphenylureas, originally designed as ABAD inhibitors, for their inhibitory activity towards CK1. Several compounds were found to be submicromolar CK1 inhibitors. Moreover, two compounds were found to inhibit both, ABAD and CK1. Such dual-activity could be of advantage for AD treatment, as it would simultaneously target two distinct pathological processes involved in disease’s progression. Based on PAMPA testing both compounds were suggested to permeate the blood-brain barrier, which makes them, together with their unique dual activity, interesting lead compounds for further development.  相似文献   
66.
Urinary microRNAs (miRNAs) are emerging as clinically useful tool for early and non‐invasive detection of various types of cancer including bladder cancer (BCA). In this study, 205 patients with BCA and 99 healthy controls were prospectively enrolled. Expression profiles of urinary miRNAs were obtained using Affymetrix miRNA microarrays (2578 miRNAs) and candidate miRNAs further validated in independent cohorts using qRT‐PCR. Whole‐genome profiling identified 76 miRNAs with significantly different concentrations in urine of BCA compared to controls (P < 0.01). In the training and independent validation phase of the study, miR‐31‐5p, miR‐93‐5p and miR‐191‐5p were confirmed to have significantly higher levels in urine of patients with BCA in comparison with controls (P < 0.01). We further established 2‐miRNA‐based urinary DxScore (miR‐93‐5p, miR‐31‐5p) enabling sensitive BCA detection with AUC being 0.84 and 0.81 in the training and validation phase, respectively. Moreover, DxScore significantly differed in the various histopathological subgroups of BCA and decreased post‐operatively. In conclusion, we identified and independently validated cell‐free urinary miRNAs as promising biomarkers enabling non‐invasive detection of BCA.  相似文献   
67.
The arms race between specialist predators and their prey has resulted in the evolution of a variety of specific adaptations. In venomous predators, this can include venom composition, particularly if predators are specialized on dangerous prey. Here, we performed an integrative study using six species of highly specialized ant‐eating spiders of the genus Zodarion to investigate their phylogeny, realized trophic niche, efficacy in the capture of various ant species and venom composition. Data on natural diet obtained by next‐generation sequencing and field observations showed that the six Zodarion species exploit different ant species. Their phylogeny, based on mitochondrial and nuclear genes, correlated with the composition of their natural prey, indicating that closely related Zodarion species specialize on similar ant species. Prey‐capture parameters differed among Zodarion species suggesting prey‐specific efficacy. Similarly, the venom profiles of both low and high molecular compounds differed among species. Only the profiles of low molecular compounds were correlated with capture efficacy parameters, suggesting that the venom of Zodarion spiders contains prey‐specific components. Our study suggests that Iberian Zodarion spiders are specialized on particular ant species.  相似文献   
68.
 Human natural killer (NK) cells express on their surface several members of the C-type lectin family such as NKR-P1, CD94, and NKG2 that are probably involved in recognition of target cells and delivery of signals modulating NK cell cytotoxicity. To elucidate the mechanisms involved in signaling via these receptors, we solubilized in vitro cultured human NK cells by a mild detergent, Brij-58, immunoprecipitated molecular complexes containing the NKR-P1 or CD94 molecules, respectively, by specific monoclonal antibodies, and performed in vitro kinase assays on the immunoprecipitates. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, autoradiography, and phospho-amino acid analysis revealed the presence of in vitro tyrosine phosphorylated proteins that were subsequently identified by re-precipitation (and/or by western blotting) as the respective C-type lectin molecules and Src family kinases Lck, Lyn, and Fyn. The NKR-P1 and the CD94-containing complexes were independent of each other and both very large, as judged by Sepharose 4B gel chromatography. Crosslinking of NKR-P1 on the cell surface induced transient in vivo tyrosine phosphorylation of cellular protein substrates. These results indicate involvement of the associated Src-family kinases in signaling via the NKR-P1 and CD94 receptors. Received: 4 February 1997 / Revised: 28 February 1997  相似文献   
69.
In this research, a microbial endophytic strain obtained from the rhizosphere of the conifer Taxus baccata and designated as Streptomyces sp. AC35 (FJ001754.1 Streptomyces, GenBank) was investigated. High 16S rDNA gene sequence similarity suggests that this strain is closely related to S. odorifer. The major fatty acid profile of intracellular lipids was also carried out to further identify this strain. Atomic force microscopy and scanning acoustic microscopy were used to image our strain. Its major excreted substances were extracted, evaluated for antimicrobial activity, purified, and identified by ultraviolet–visible spectroscopy (UV–vis), liquid chromatography–mass spectrometry (LC–MS/MS) and nuclear magnetic resonance as the bioactive isoflavone aglycones—daidzein, glycitein and genistein. Batch cultivation, performed under different pH conditions, revealed enhanced production of antimycin components when the pH was stable at 7.0. Antimycins were detected by HPLC and identified by UV–vis and LC–MS/MS combined with the multiple reaction monitoring. Our results demonstrate that Streptomyces sp. AC35 might be used as a potential source of effective, pharmaceutically active compounds.  相似文献   
70.
Acute leukemia is a disease pathologically manifested at both genomic and proteomic levels. Molecular genetic technologies are currently widely used in clinical research. In contrast, sensitive and high-throughput proteomic techniques for performing protein analyses in patient samples are still lacking. Here, we used a technology based on size exclusion chromatography followed by immunoprecipitation of target proteins with an antibody bead array (Size Exclusion Chromatography-Microsphere-based Affinity Proteomics, SEC-MAP) to detect hundreds of proteins from a single sample. In addition, we developed semi-automatic bioinformatics tools to adapt this technology for high-content proteomic screening of pediatric acute leukemia patients.To confirm the utility of SEC-MAP in leukemia immunophenotyping, we tested 31 leukemia diagnostic markers in parallel by SEC-MAP and flow cytometry. We identified 28 antibodies suitable for both techniques. Eighteen of them provided excellent quantitative correlation between SEC-MAP and flow cytometry (p < 0.05). Next, SEC-MAP was applied to examine 57 diagnostic samples from patients with acute leukemia. In this assay, we used 632 different antibodies and detected 501 targets. Of those, 47 targets were differentially expressed between at least two of the three acute leukemia subgroups. The CD markers correlated with immunophenotypic categories as expected. From non-CD markers, we found DBN1, PAX5, or PTK2 overexpressed in B-cell precursor acute lymphoblastic leukemias, LAT, SH2D1A, or STAT5A overexpressed in T-cell acute lymphoblastic leukemias, and HCK, GLUD1, or SYK overexpressed in acute myeloid leukemias. In addition, OPAL1 overexpression corresponded to ETV6-RUNX1 chromosomal translocation.In summary, we demonstrated that SEC-MAP technology is a powerful tool for detecting hundreds of proteins in clinical samples obtained from pediatric acute leukemia patients. It provides information about protein size and reveals differences in protein expression between particular leukemia subgroups. Forty-seven of SEC-MAP identified targets were validated by other conventional method in this study.Acute leukemia (AL)1 is the most common childhood cancer, accounting for a quarter of all pediatric malignancies (1). Accumulated chromosomal translocations and mutations in proto-oncogenes alter proliferation, differentiation, apoptosis and death in developing hematogones, ultimately leading to the development of leukemia (2, 3). The most recent understanding of these cancer-related changes is based on molecular genetic studies that focused primarily on DNA and mRNA alterations. High-throughput molecular genetic technologies, such as mRNA expression profiling and next generation sequencing, are widely used in clinical research. These techniques can provide new classification schemes, define new prognostic subgroups and outline the background of some pathological mechanisms (2, 4, 5, 6, 7) but they cannot easily elucidate the functional consequences at the cellular level. Proteins are the principal carriers of cellular functions. Thus, the analysis of proteins and protein modifications can elucidate the pathological mechanisms of leukemia or clarify the response mechanisms to current and emerging therapies. Currently, flow cytometry is used in clinical laboratories to analyze dozens of proteins that are expressed by leukemic cells (8, 9). These proteins, which are mostly surface CD markers, can reflect lineage commitment, developmental status and even the underlying genetic lesion (10, 11) but they do not carry information about the intracellular processes that control malignant transformation. Moreover, many cancer alterations are manifested only at the functional level, including changes in subcellular localization, post-translational modification (e.g. phosphorylation), protein cleavage, or protein–protein interactions (12). Proteomic techniques that can capture disease-associated changes are needed. Mass spectrometry (MS) is presently the technique of choice for large-scale proteomic analysis. MS can uncover thousands of molecules without an a priori probe selection, e.g. new disease-associated features in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) (13, 14). Despite its tremendous analytical power, MS is complex and not widely accessible. Unlike MS, affinity proteomics is a simple technology suitable for large-scale protein analysis in primary cancer samples in the clinical laboratories. Recently, a technique linking size exclusion chromatography (SEC) to microsphere-based antibody arrays (microsphere-based affinity proteomics (MAP)) has been developed (15, 16). SEC-MAP enables the detection of hundreds of proteins in a single sample and provides essential information about protein size. Because only five to ten million cells are necessary, SEC-MAP can serve as a sensitive, sample-sparing and high-content tool for protein profiling in leukemia samples probing the relative amounts of different proteins, as well as protein size and cleavage (17). Our in-house-assembled MAP array is a set of 1152 populations of fluorescent-labeled microbeads, each carrying an antibody against a single human antigen. Native cellular proteins (and their complexes) are isolated from cellular compartments using detergents, labeled with biotin (biotin-PEO4-NHS) and subjected to SEC to obtain 24 size fractions. The SEC fractions are incubated with MAP microbeads, and antibody-protein binding is detected using phycoerythrin (PE)-labeled streptavidin with flow cytometry. The flow cytometer resolves the color code of each microbead population and reads the amount of bound protein. The data from 24 SEC fractions are combined, and a protein''s binding relative to its size is detected as a “protein entity.” Data are analyzed with in-house R-based software. This approach permits automatic batch processing of raw flow cytometry standard (FCS) files in addition to advanced analyses including quality control steps (the minimal number of microspheres required in a population and the unimodality of the signal in the PE channel is checked) (17). We wanted to find out whether SEC-MAP can be used in the clinical laboratory to bring a biologically important information, e.g. to classify acute leukemias or to find the marker with a prognostic relevance. We assembled MAP arrays to carry antibodies against proteins that are known to be important for leukemia diagnostics (18, 9) and against components of intracellular signaling networks (16). Through extensive testing on leukemia samples, we have identified antibodies that are suitable for immunoprecipitation-based techniques. Furthermore, we have improved the software tools to allow for large-scale data normalization, fast automatic protein entity detection with manual correction, and the discovery of differentially expressed entities in multiple samples. Using innovative software tools, we have identified entities that were differentially expressed between particular AL subgroups. To ensure the specificity we have validated the data collected by SEC-MAP with classical flow cytometry-based immunophenotyping (FACS), Western blot (WB) and quantitative real-time PCR (qRT-PCR). Moreover, we have addressed practical sample processing issues related to patient material handling and logistics. Based on the protein size profile, we were able to discriminate proteolytically degraded samples from those with an uncleaved proteome. Importantly, proteolysis would be missed by conventional protein load controls in Western blots. Thus, the SEC-MAP array was demonstrated to be a useful, reproducible and accurate high-content proteomic tool for the assessment of primary leukemia samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号