首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   348篇
  免费   22篇
  2023年   4篇
  2022年   7篇
  2021年   18篇
  2020年   12篇
  2019年   5篇
  2018年   18篇
  2017年   7篇
  2016年   14篇
  2015年   11篇
  2014年   12篇
  2013年   22篇
  2012年   36篇
  2011年   38篇
  2010年   16篇
  2009年   10篇
  2008年   41篇
  2007年   35篇
  2006年   11篇
  2005年   22篇
  2004年   5篇
  2003年   6篇
  2002年   2篇
  2001年   4篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1982年   1篇
  1971年   2篇
  1970年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有370条查询结果,搜索用时 15 毫秒
51.

Numerous prokaryotes accumulate polyhydroxyalkanoates (PHA) in the form of intracellular granules. The primary function of PHA is the storage of carbon and energy. Nevertheless, there are numerous reports that the presence of PHA granules in microbial cells enhances their stress resistance and fitness when exposed to various stress factors. In this work, we studied the protective mechanism of PHA granules against UV irradiation employing Cupriavidus necator as a model bacterial strain. The PHA-accumulating wild type strain showed substantially higher UV radiation resistance than the PHA non-accumulating mutant. Furthermore, the differences in UV-Vis radiation interactions with both cell types were studied using various spectroscopic approaches (turbidimetry, absorption spectroscopy, and nephelometry). Our results clearly demonstrate that intracellular PHA granules efficiently scatter UV radiation, which provides a substantial UV-protective effect for bacterial cells and, moreover, decreases the intracellular level of reactive oxygen species in UV-challenged cells. The protective properties of the PHA granules are enhanced by the fact that granules specifically bind to DNA, which in turn provides shield-like protection of DNA as the most UV-sensitive molecule. To conclude, the UV-protective action of PHA granules adds considerable value to their primary storage function, which can be beneficial in numerous environments.

  相似文献   
52.
Applied Microbiology and Biotechnology - Distillers’ dried grains with solubles (DDGS) is a low-value agro-industrial by-product, rich in arabinoxylans (AX), which is produced by commercial...  相似文献   
53.
Prochlorothrix hollandica is one of the three known species of an unusual clade of cyanobacteria (formerly called “prochlorophytes”) that contain chlorophyll a and b molecules bound to intrinsic light-harvesting antenna proteins. Here, we report the structural characterization of supramolecular complex consisting of Photosystem I (PSI) associated with the chlorophyll a/b-binding Pcb proteins. Electron microscopy and single particle image analysis of negatively stained preparations revealed that the Pcb-PSI supercomplex consists of a central trimeric PSI surrounded by a ring of 18 Pcb subunits. We conclude that the formation of the Pcb ring around trimeric PSI represents a mechanism for increasing the light-harvesting efficiency in chlorophyll b-containing cyanobacteria.  相似文献   
54.
In plants, the G2/M control of cell cycle remains an elusive issue as doubts persist about activatory dephosphorylation--in other eukaryotes provided by CDC25 phosphatase and serving as a final all-or-nothing mitosis regulator. We report on the effects of tobacco (Nicotiana tabacum L., cv. Samsun) transformation with fission yeast (Schizosaccharomyces pombe) cdc25 (Spcdc25) on cell characteristics. Transformed cell suspension cultures showed higher dry mass accumulation during the exponential phase and clustered more circular cell phenotypes compared to chains of elongated WT cells. Similar cell parameters, as in the transformants, can be induced in WT by cytokinins. Spcdc25 cells, after cytokinin treatment, showed giant cell clusters and growth inhibition. In addition, Spcdc25 expression led to altered carbohydrate status: increased starch and soluble sugars with higher sucrose:hexoses ratio, inducible in WT by cytokinin treatment. Taken together, the Spcdc25 transformation had a cytokinin-like effect on studied characteristics. However, endogenous cytokinin determination revealed markedly lower cytokinin levels in Spcdc25 transformants. This indicates that the cells sense Spcdc25 expression as an increased cytokinin availability, manifested by changed cell morphology, and in consequence decrease endogenous cytokinin levels. Clearly, the results on cell growth and morphology are consistent with the model of G2/M control including cytokinin-regulated activatory dephosphorylation. Nevertheless, no clear link is obvious between Spcdc25 transformation and carbohydrate status and thus the observed cytokinin-like effect on carbohydrate levels poses a problem. Hence, we propose that Spcdc25-induced higher CDK(s) activity at G2/M generates a signal-modifying carbohydrate metabolism to meet high energy and C demands of forthcoming cell division.  相似文献   
55.
Steady-state performance characteristics of a trickle bed reactor (TBR) and a biofilter (BF) in loading experiments with increasing toluene/xylenes inlet concentrations while maintaining a constant loading rate of hydrophilic components (methyl ethyl and methyl isobutyl ketones, acetone, and n-butyl acetate) of 4 g m−3 h−1 were evaluated and compared, along with the systems’ dynamic responses. At the same combined substrate loading of 55 g m−3 h−1 for both reactors, the TBR achieved more than 1.5 times higher overall removal efficiency (REW) than the BF. Increasing the loading rate of aromatics resulted in a gradual decrease of their REs. The degradation rates of acetone and n-butyl acetate were also inhibited at higher loads of aromatics, thus revealing a competition in cell catabolism. A step-drop in loading of aromatics resulted in an immediate increase of REW with variations in the TBR, while the new steady-state value in the BF took 6–7 h to achieve. The TBR consistently showed a greater performance than BF in removing toluene and xylenes. Increasing the loading rate of aromatics resulted in a gradual decrease of their REs. The degradation rates of acetone and n-butyl acetate were also lower at higher OLAROM, revealing a competition in the cell catabolism. The results obtained are consistent with the proposed hypothesis of greater toxic effects under low water content, i.e., in the biofilter, caused by aromatic hydrocarbons in the presence of polar ketones and esters, which may improve the hydrocarbon partitioning into the aqueous phase.  相似文献   
56.
57.
58.

Aims

The diverse physiological functions of histamine are mediated through distinct histamine receptors. In this study we investigated the role of H2R and H4R in the effects of histamine on the production of reactive oxygen species by phagocytes in whole blood.

Main methods

Changes in reactive oxygen species (ROS) production by whole blood phagocytes after treatment with histamine, H4R agonists (4-methylhistamine, VUF8430), H2R agonist (dimaprit) and their combinations with H4R antagonist (JNJ10191584) and H2R antagonist (ranitidine) were determined using the chemiluminescence (CL) assay. To exclude the direct scavenging effects of the studied compounds on the CL response, the antioxidant properties of all compounds were measured using several methods (TRAP, ORAC, and luminol–HRP–H2O2 based CL).

Key findings

Histamine, 4-methylhistamine, VUF8430 and dimaprit inhibited the spontaneous and OZP-activated whole blood CL in a dose-dependent manner. On the other hand, only VUF8430 was able to inhibit PMA-activated whole blood CL. Ranitidine, but not JNJ10191584, completely reduced the effects of histamine, 4-methylhistamine and dimaprit. The direct scavenging ability of tested compounds was negligible.

Significance

Our results demonstrate that the inhibitory effects of histamine on ROS production in whole blood phagocytes were caused by H2R. Our results also suggest that H4R agonists in concentrations higher than 10− 6 M may also influence ROS production via binding to H2R.  相似文献   
59.
In the current meiotic recombination initiation model, the SPO11 catalytic subunits associate with MTOPVIB to form a Topoisomerase VI-like complex that generates DNA double strand breaks (DSBs). Four additional proteins, PRD1/AtMEI1, PRD2/AtMEI4, PRD3/AtMER2 and the plant specific DFO are required for meiotic DSB formation. Here we show that (i) MTOPVIB and PRD1 provide the link between the catalytic sub-complex and the other DSB proteins, (ii) PRD3/AtMER2, while localized to the axis, does not assemble a canonical pre-DSB complex but establishes a direct link between the DSB-forming and resection machineries, (iii) DFO controls MTOPVIB foci formation and is part of a divergent RMM-like complex including PHS1/AtREC114 and PRD2/AtMEI4 but not PRD3/AtMER2, (iv) PHS1/AtREC114 is absolutely unnecessary for DSB formation despite having a conserved position within the DSB protein network and (v) MTOPVIB and PRD2/AtMEI4 interact directly with chromosome axis proteins to anchor the meiotic DSB machinery to the axis.  相似文献   
60.
Pulmonary infections caused by Bordetella pertussis used to be the prime cause of infant mortality in the pre-vaccine era and mouse models of pertussis pneumonia served in characterization of B. pertussis virulence mechanisms. However, the biologically most relevant catarrhal disease stage and B. pertussis transmission has not been adequately reproduced in adult mice due to limited proliferation of the human-adapted pathogen on murine nasopharyngeal mucosa. We used immunodeficient C57BL/6J MyD88 KO mice to achieve B. pertussis proliferation to human-like high counts of 108 viable bacteria per nasal cavity to elicit rhinosinusitis accompanied by robust shedding and transmission of B. pertussis bacteria to adult co-housed MyD88 KO mice. Experiments with a comprehensive set of B. pertussis mutants revealed that pertussis toxin, adenylate cyclase toxin-hemolysin, the T3SS effector BteA/BopC and several other known virulence factors were dispensable for nasal cavity infection and B. pertussis transmission in the immunocompromised MyD88 KO mice. In contrast, mutants lacking the filamentous hemagglutinin (FhaB) or fimbriae (Fim) adhesins infected the nasal cavity poorly, shed at low levels and failed to productively infect co-housed MyD88 KO or C57BL/6J mice. FhaB and fimbriae thus appear to play a critical role in B. pertussis transmission. The here-described novel murine model of B. pertussis-induced nasal catarrh opens the way to genetic dissection of host mechanisms involved in B. pertussis shedding and to validation of key bacterial transmission factors that ought to be targeted by future pertussis vaccines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号