首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   1篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2016年   2篇
  2015年   2篇
  2014年   6篇
  2013年   1篇
  2012年   9篇
  2011年   12篇
  2009年   2篇
  2008年   5篇
  2007年   8篇
  2006年   10篇
  2005年   11篇
  2004年   3篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  1985年   1篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
61.
62.
63.
Currently, various alloplastic materials are being used for reconstruction of three-dimensional structures, and high-density porous polyethylene is so far the best and the most commonly used material. Various indications for high-density porous polyethylene have been defined for closure of craniofacial defects, correction of congenital anomalies, and aesthetic augmentations. A common property of various studies published so far is that after being fixed to the bone or underlying structures, high-density porous polyethylene has been covered primarily or by skin flaps. For reconstruction of complex three-dimensional structures such as the ear and nose, the success of current methods is limited by the thinness and pliability of the skin flap. In this study, the authors' aim was to investigate the graftability of high-density porous polyethylene after prefabrication with an axial pedicle and to explore possible clinical applications in light of the new data obtained. In the experimental study, three-dimensional implants (rectangular prism) carved from high-density porous polyethylene were prefabricated using bilateral superficial epigastric arteries and veins of 25 New Zealand rabbits. After a waiting period of 2 to 6 weeks in five groups, control samples were obtained and the prefabricated implants that had been left in place were directly grafted. The results showed that high-density porous polyethylene was vascularized 75 percent after 4 weeks and 90 percent after 5 weeks, and 95 percent of the grafts had survived after 8 weeks. In the clinical study, three nose defects, three ear defects, and one hard palate defect in seven patients ranging in age from 21 to 72 years were reconstructed using the same method. High-density porous polyethylene has been prefabricated and directly grafted for the very first time on a clinical basis. No serious complications have been observed, except for minimal graft loss in two patients. It is obvious that full-thickness skin grafts that are thinner than flaps will adapt better to the fine details of high-density porous polyethylene and will highly increase the detail obtained in the reconstruction of three-dimensional defects.  相似文献   
64.
65.
The metabolic consequences of mitophagy alterations due to age-related stress in healthy aging brains versus neurodegeneration remain unknown. Here, we demonstrate that ceramide synthase 1 (CerS1) is transported to the outer mitochondrial membrane by the p17/PERMIT transporter that recognizes mislocalized mitochondrial ribosomes (mitoribosomes) via 39-FLRN-42 residues, inducing ceramide-mediated mitophagy. P17/PERMIT-CerS1-mediated mitophagy attenuated the argininosuccinate/fumarate/malate axis and induced d -glucose and fructose accumulation in neurons in culture and brain tissues (primarily in the cerebellum) of wild-type mice in vivo. These metabolic changes in response to sodium-selenite were nullified in the cerebellum of CerS1to/to (catalytically inactive for C18-ceramide production CerS1 mutant), PARKIN−/− or p17/PERMIT−/− mice that have dysfunctional mitophagy. Whereas sodium selenite induced mitophagy in the cerebellum and improved motor-neuron deficits in aged wild-type mice, exogenous fumarate or malate prevented mitophagy. Attenuating ceramide-mediated mitophagy enhanced damaged mitochondria accumulation and age-dependent sensorimotor abnormalities in p17/PERMIT−/− mice. Reinstituting mitophagy using a ceramide analog drug with selenium conjugate, LCL768, restored mitophagy and reduced malate/fumarate metabolism, improving sensorimotor deficits in old p17/PERMIT−/− mice. Thus, these data describe the metabolic consequences of alterations to p17/PERMIT/ceramide-mediated mitophagy associated with the loss of mitochondrial quality control in neurons and provide therapeutic options to overcome age-dependent sensorimotor deficits and related disorders like amyotrophic lateral sclerosis (ALS).  相似文献   
66.
Adhesion formation is a common cause of complications following surgery. The aim of this study was to investigate the effect of resveratrol on intra-abdominal adhesion prevention in a rat model. Twenty one Wistar-Albino rats weighing 200-250 g were assigned to three groups, of 7 rats each. After a midline laparotomy was performed, a 1 cm area of the ceacum was abraded in two of the groups. They were then given either resveratrol (Group 1), or saline (Group 2) intraperitoneally. Group 3 rats (sham operation) received no treatment, without the serosal damage. On the 14th day, the rats were killed and the adhesion score was determined according to Mazuji's adhesion grade scale. The tissue levels of malondialdehyde (MDA), nitric oxide (NO), and reduced glutathione (GSH) were measured. The mean Mazuji's adhesion grade in the resveratrol group was 1.0 +/- 0.0, in the saline group 2.57 +/- 1.51, and zero in the sham operated group (p < 0.05 between the resveratrol group and saline group comparison). The levels of MDA and NO in the resveratrol group were significantly lower than those of the saline group (p < 0.001). The level of GSH in the resveratrol group was significantly higher than in the saline and sham operated groups (p < 0.001 and p < 0.001, respectively). Introduction of resveratrol into the peritoneal cavity at the time of surgery reduced adhesion formation effectively in this model. Resveratrol probably acts through reduction of lipid peroxidation products.  相似文献   
67.
Radiation and Environmental Biophysics - The main goal of this study was to determine radiation interaction parameters such as mass attenuation coefficients, effective atomic numbers, and effective...  相似文献   
68.
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号