首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   8篇
  128篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2016年   6篇
  2015年   7篇
  2014年   8篇
  2013年   10篇
  2012年   15篇
  2011年   8篇
  2010年   6篇
  2009年   7篇
  2008年   5篇
  2007年   12篇
  2006年   9篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   4篇
  1999年   1篇
  1996年   1篇
  1992年   2篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1975年   2篇
  1972年   1篇
  1967年   1篇
排序方式: 共有128条查询结果,搜索用时 15 毫秒
91.
Although nitrosative stress is known to severely impede the ability of living systems to generate adenosine triphosphate (ATP) via oxidative phosphorylation, there is limited information on how microorganisms fulfill their energy needs in order to survive reactive nitrogen species (RNS). In this study we demonstrate an elaborate strategy involving substrate-level phosphorylation that enables the soil microbe Pseudomonas fluorescens to synthesize ATP in a defined medium with fumarate as the sole carbon source. The enhanced activities of such enzymes as phosphoenolpyruvate carboxylase and pyruvate phosphate dikinase coupled with the increased activities of phospho-transfer enzymes like adenylate kinase and nucleoside diphophate kinase provide an effective strategy to produce high energy nucleosides in an O2-independent manner. The alternate ATP producing machinery is fuelled by the precursors derived from fumarate with the aid of fumarase C and fumarate reductase. This metabolic reconfiguration is key to the survival of P. fluorescens and reveals potential targets against RNS-resistant organisms.  相似文献   
92.
Measures of population differentiation, such as FST, are traditionally derived from the partition of diversity within and between populations. However, the emergence of population clusters from multilocus analysis is a function of genetic structure (departures from panmixia) rather than of diversity. If the populations are close to panmixia, slight differences between the mean pairwise distance within and between populations (low FST) can manifest as strong separation between the populations, thus population clusters are often evident even when the vast majority of diversity is partitioned within populations rather than between them. For any given FST value, clusters can be tighter (more panmictic) or looser (more stratified), and in this respect higher FST does not always imply stronger differentiation. In this study we propose a measure for the partition of structure, denoted EST, which is more consistent with results from clustering schemes. Crucially, our measure is based on a statistic of the data that is a good measure of internal structure, mimicking the information extracted by unsupervised clustering or dimensionality reduction schemes. To assess the utility of our metric, we ranked various human (HGDP) population pairs based on FST and EST and found substantial differences in ranking order. EST ranking seems more consistent with population clustering and classification and possibly with geographic distance between populations. Thus, EST may at times outperform FST in identifying evolutionary significant differentiation.  相似文献   
93.
MOTIVATION: Phylogenies--the evolutionary histories of groups of organisms-play a major role in representing relationships among biological entities. Although many biological processes can be effectively modeled as tree-like relationships, others, such as hybrid speciation and horizontal gene transfer (HGT), result in networks, rather than trees, of relationships. Hybrid speciation is a significant evolutionary mechanism in plants, fish and other groups of species. HGT plays a major role in bacterial genome diversification and is a significant mechanism by which bacteria develop resistance to antibiotics. Maximum parsimony is one of the most commonly used criteria for phylogenetic tree inference. Roughly speaking, inference based on this criterion seeks the tree that minimizes the amount of evolution. In 1990, Jotun Hein proposed using this criterion for inferring the evolution of sequences subject to recombination. Preliminary results on small synthetic datasets. Nakhleh et al. (2005) demonstrated the criterion's application to phylogenetic network reconstruction in general and HGT detection in particular. However, the naive algorithms used by the authors are inapplicable to large datasets due to their demanding computational requirements. Further, no rigorous theoretical analysis of computing the criterion was given, nor was it tested on biological data. RESULTS: In the present work we prove that the problem of scoring the parsimony of a phylogenetic network is NP-hard and provide an improved fixed parameter tractable algorithm for it. Further, we devise efficient heuristics for parsimony-based reconstruction of phylogenetic networks. We test our methods on both synthetic and biological data (rbcL gene in bacteria) and obtain very promising results.  相似文献   
94.
This study was carried out to examine the antimicrobial activity of the aqueous extract of Panax quinquefolius from North American ginseng (NAGE) root against Pseudomonas aeruginosa . The minimum inhibitory concentrations of reference and clinical isolates of Pseudomonas aeruginosa were measured by a standard agar-dilution method. At subinhibitory NAGE concentrations, the secretion of virulence factors, motility on agar, and adhesion to 96-well microplates were studied on the nonmucoid Pseudomonas aeruginosa O1 strain. At suprainhibitory concentrations, the activity of NAGE against mature biofilm complexes formed in the Calgary Biofilm Device and the Stovall flow cell were assessed. NAGE possessed an antibacterial activity against all the Pseudomonas aeruginosa strains at 1.25%-2.5% w/v. NAGE also significantly attenuated pyocyanin, pyoverdine, and lipase concentrations, stimulated twitching, and attenuated swarming and swimming motility. At 1.25% w/v, NAGE augmented adhesion, and at 5% w/v detached 1-day-old biofilms in microplates. The extract also eradicated 6-day-old mature biofilms (5% w/v), and fluorescence microscopy displayed a reduction of live cells and biofilm complexes compared with nontreated biofilms. These data suggest that the aqueous extract from North American ginseng possesses antimicrobial activities in vitro.  相似文献   
95.
Proper functioning of the protein-folding quality control network depends on the network's ability to discern diverse structural perturbations to the native states of its protein substrates. Despite the centrality of the detection of misfolded states to cell home-ostasis, very little is known about the exact sequence and structural features that mark a protein as being misfolded. To investigate these features, we studied the requirements for the degradation of the yeast kinetochore protein Ndc10p. Mutant Ndc10p is a substrate of a protein-folding quality control pathway mediated by the E3 ubiquitin (Ub) ligase Doa10p at the endoplasmic reticulum (ER)/nuclear envelope membrane. Analysis of Ndc10p mutant derivatives, employing a reverse genetics approach, identified an autonomous quality control-associated degradation motif near the C-terminus of the protein. This motif is composed of two indispensable hydrophobic elements: a hydrophobic surface of an amphipathic helix and a loosely structured hydrophobic C-terminal tail. Site-specific point mutations expose these elements, triggering ubiquitin-mediated and HSP70 chaperone-dependent degradation of Ndc10p. These findings substantiate the ability of the ER quality control system to recognize subtle perturbation(s) in the native structure of a nuclear protein.  相似文献   
96.
A fundamental observation of comparative genomics is that the distribution of evolution rates across the complete sets of orthologous genes in pairs of related genomes remains virtually unchanged throughout the evolution of life, from bacteria to mammals. The most straightforward explanation for the conservation of this distribution appears to be that the relative evolution rates of all genes remain nearly constant, or in other words, that evolutionary rates of different genes are strongly correlated within each evolving genome. This correlation could be explained by a model that we denoted Universal PaceMaker (UPM) of genome evolution. The UPM model posits that the rate of evolution changes synchronously across genome-wide sets of genes in all evolving lineages. Alternatively, however, the correlation between the evolutionary rates of genes could be a simple consequence of molecular clock (MC). We sought to differentiate between the MC and UPM models by fitting thousands of phylogenetic trees for bacterial and archaeal genes to supertrees that reflect the dominant trend of vertical descent in the evolution of archaea and bacteria and that were constrained according to the two models. The goodness of fit for the UPM model was better than the fit for the MC model, with overwhelming statistical significance, although similarly to the MC, the UPM is strongly overdispersed. Thus, the results of this analysis reveal a universal, genome-wide pacemaker of evolution that could have been in operation throughout the history of life.  相似文献   
97.
Chor B  Snir S 《Systematic biology》2004,53(6):963-967
Maximum likelihood (ML) is increasingly used as an optimality criterion for selecting evolutionary trees, but finding the global optimum is a hard computational task. Because no general analytic solution is known, numeric techniques such as hill climbing or expectation maximization (EM) are used in order to find optimal parameters for a given tree. So far, analytic solutions were derived only for the simplest model-three-taxa, two-state characters, under a molecular clock. Quoting Ziheng Yang, who initiated the analytic approach,"this seems to be the simplest case, but has many of the conceptual and statistical complexities involved in phylogenetic estimation."In this work, we give general analytic solutions for a family of trees with four-taxa, two-state characters, under a molecular clock. The change from three to four taxa incurs a major increase in the complexity of the underlying algebraic system, and requires novel techniques and approaches. We start by presenting the general maximum likelihood problem on phylogenetic trees as a constrained optimization problem, and the resulting system of polynomial equations. In full generality, it is infeasible to solve this system, therefore specialized tools for the molecular clock case are developed. Four-taxa rooted trees have two topologies-the fork (two subtrees with two leaves each) and the comb (one subtree with three leaves, the other with a single leaf). We combine the ultrametric properties of molecular clock fork trees with the Hadamard conjugation to derive a number of topology dependent identities. Employing these identities, we substantially simplify the system of polynomial equations for the fork. We finally employ symbolic algebra software to obtain closed formanalytic solutions (expressed parametrically in the input data). In general, four-taxa trees can have multiple ML points. In contrast, we can now prove that each fork topology has a unique(local and global) ML point.  相似文献   
98.
99.
100.
To thrive in the human body, HIV fuses to its target cell and evades the immune response via several mechanisms. The fusion cascade is initiated by the fusion peptide (FP), which is located at the N-terminal of gp41, the transmembrane protein of HIV. Recently, it has been shown that the HIV-1 FP, particularly its 5–13 amino acid region (FP5–13), suppresses T-cell activation and interacts with the transmembrane domain (TMD) of the T-cell receptor (TCR) complex. Specific amino acid motifs often contribute to such interactions in TMDs of membrane proteins. Using bioinformatics and experimental studies, we report on a GxxxG-like motif (AxxxG), which is conserved in the FP throughout different clades and strains of HIV-1. Biological activity studies and FTIR spectroscopy revealed that HIV FP5–13-derived peptides, in which the motif was altered either by randomization or by a single amino acid shift, lost their immunosuppressive activity concomitant with a loss of the β-sheet structure in a membranous environment. Furthermore, fluorescence studies revealed that the inactive mutants lost their ability to interact with their target site, namely, the TMD of TCRα, designated CP. Importantly, lipotechoic acid activated macrophages (lacking TCR) were not affected by FP, further demonstrating the specificity of the immunosuppressant activity of CP. Finally, although the AxxxG WT and the GxxxG analog both associated with the CP and immunosuppressed T-cells, the AxxxG WT but not the GxxxG analog induced lipid mixing. Overall, the data support an important role for the AxxxG motif in the function of FP and might explain the natural selection of the AxxxG motif rather than the classical GxxxG motif in FP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号