首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   303篇
  免费   28篇
  331篇
  2024年   1篇
  2023年   1篇
  2022年   11篇
  2021年   16篇
  2020年   12篇
  2019年   21篇
  2018年   20篇
  2017年   15篇
  2016年   17篇
  2015年   17篇
  2014年   26篇
  2013年   39篇
  2012年   26篇
  2011年   26篇
  2010年   10篇
  2009年   10篇
  2008年   17篇
  2007年   12篇
  2006年   6篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2002年   6篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
  1987年   1篇
排序方式: 共有331条查询结果,搜索用时 12 毫秒
21.
22.
Surfactant protein-A (SP-A) belongs to a family of collagen-containing C-type lectins called collectins. SP-A is expressed by renal tubule epithelial cells. We investigated the distribution of SP-A in renal cell carcinomas (RCC) using immunohistochemical techniques and western blotting. We used 35 formalin fixed, paraffin embedded (FFPE) RCC tissue samples. We compared results with clinico-pathological parameters of RCC including age, sex, Fuhrman grade, tumor volume, tumor node metastasis (TNM) and clinical stage. SP-A was localized in the glomerulus and renal tubule epithelium in nontumor tissue and strong SP-A immunoreactivity was observed in tumor tissue. SP-A was expressed in the RCC tumor cells (64%) and nontumor cells (34%) in males and RCC tumor cells (90%) and nontumor cells (30%) in females. There was a significant correlation between SP-A immunoreactivity in tumor cells and gender, age, tumor diameter, Fuhrman grade and tumor diameter. Western blot analysis supported the immunohistochemical findings. We present evidence for involvement of SP-A in RCC and suggest that increased SP-A expression in RCC is associated with favorable prognosis.  相似文献   
23.
Ca(2+) sparks are highly localized cytosolic Ca(2+) transients caused by a release of Ca(2+) from the sarcoplasmic reticulum via ryanodine receptors (RyRs); they are the elementary events underlying global changes in Ca(2+) in skeletal and cardiac muscle. In smooth muscle and some neurons, Ca(2+) sparks activate large conductance Ca(2+)-activated K(+) channels (BK channels) in the spark microdomain, causing spontaneous transient outward currents (STOCs) that regulate membrane potential and, hence, voltage-gated channels. Using the fluorescent Ca(2+) indicator fluo-3 and a high speed widefield digital imaging system, it was possible to capture the total increase in fluorescence (i.e., the signal mass) during a spark in smooth muscle cells, which is the first time such a direct approach has been used in any system. The signal mass is proportional to the total quantity of Ca(2+) released into the cytosol, and its rate of rise is proportional to the Ca(2+) current flowing through the RyRs during a spark (I(Ca(spark))). Thus, Ca(2+) currents through RyRs can be monitored inside the cell under physiological conditions. Since the magnitude of I(Ca(spark)) in different sparks varies more than fivefold, Ca(2+) sparks appear to be caused by the concerted opening of a number of RyRs. Sparks with the same underlying Ca(2+) current cause STOCs, whose amplitudes vary more than threefold, a finding that is best explained by variability in coupling ratio (i.e., the ratio of RyRs to BK channels in the spark microdomain). The time course of STOC decay is approximated by a single exponential that is independent of the magnitude of signal mass and has a time constant close to the value of the mean open time of the BK channels, suggesting that STOC decay reflects BK channel kinetics, rather than the time course of [Ca(2+)] decline at the membrane. Computer simulations were carried out to determine the spatiotemporal distribution of the Ca(2+) concentration resulting from the measured range of I(Ca(spark)). At the onset of a spark, the Ca(2+) concentration within 200 nm of the release site reaches a plateau or exceeds the [Ca(2+)](EC50) for the BK channels rapidly in comparison to the rate of rise of STOCs. These findings suggest a model in which the BK channels lie close to the release site and are exposed to a saturating [Ca(2+)] with the rise and fall of the STOCs determined by BK channel kinetics. The mechanism of signaling between RyRs and BK channels may provide a model for Ca(2+) action on a variety of molecular targets within cellular microdomains.  相似文献   
24.
Introduction: Broccoli (Brassica oleracea) is well known for its properties as an anticancer, antioxidant, and scavenger of free radicals. However, its benefits in enhancing spermatogenesis have not been well established.Objective: To study broccoli aqueous extract effects on sperm factors and the expression of genes Catsper1, Catsper2, Arl4a, Sox5, and Sox9 in sperm factors in mice.Material and methods: Male mice were divided randomly into six groups: (1) Control; (2) cadmium (3 mg/kg of mouse body weight); (3) orally treated with 200 µl broccoli aqueous extract (1 g ml-1); (4) orally treated with 400 µl of broccoli aqueous extract; (5) orally treated with 200 broccoli aqueous extract plus cadmium, and (6) orally treated with 400 µl of broccoli aqueous extract plus cadmium. We analyzed the sperms factors and Catsper1, Catsper2, Arl4a, Sox5, and Sox9 gene expression.Results: An obvious improvement in sperm count and a slight enhancement in sperm motility were observed in mice treated with broccoli extract alone or with cadmium. Sperm viability was reduced by broccoli extract except for the 200 µl dose with cadmium, which significantly increased it. Interestingly, Arl4a gene expression increased in the 400 µl broccoli- treated group. Likewise, the Arl4a mRNA level in mice treated with cadmium and 200 µl of broccoli extract was higher than in the cadmium-treated mice. Furthermore, broccoli extract enhanced the mRNA level of Catsper2 and Sox5 genes in mice treated with 200 µl and 400 µl broccoli extract plus cadmium compared with the group treated solely with cadmium.Conclusion: The higher sperm count in broccoli-treated mice opens the way for the development of pharmaceutical products for infertile men.  相似文献   
25.
Biological Trace Element Research - In low-income and middle-income countries such as Iran, smoking is becoming increasingly popular, especially among young people. This has led to additional...  相似文献   
26.
The aqueous humor (AH) flow in the anterior chamber (AC) due to saccadic movements is investigated in this research. The continuity, Navier-Stokes and energy equations in 3D and unsteady forms are solved numerically and the saccadic motion was modeled by the dynamic mesh technique. Firstly, the numerical model was validated for the saccadic movement of a spherical cavity with analytic solutions and experimental data where excellent agreement was observed. Then, two types of periodic and realistic saccadic motions of the AC are simulated, whereby the flow field is computed for various saccade amplitudes and the results are reported for different times. The results show that the acting shear stress on the corneal endothelial cells from AH due to saccadic movements is much higher than that due to normal AH flow by buoyancy induced due to temperature gradient. This shear stress is higher on the central region of the cornea. The results also depict that eye saccade imposes a 3D complicated flow field in the AC consist of various vortex structures. Finally, the enchantment of heat transfer in the AC by AH mixing as a result of saccadic motion is investigated.  相似文献   
27.
28.
Abstract

A classical question in systems biology is to find a Boolean model which is able to predict the observed responses of a signaling network. It has been previously shown that such models can be tailored based on experimental data. While fitting a minimum-size network to the experimentally observed data is a natural assumption, it can potentially result in a network which is not so robust against the noises in the training dataset. Indeed, it is widely accepted now that biological systems are generally evolved to be very robust. Therefore, in the present work, we extended the classical formulation of Boolean network construction in order to put weight on the robustness of the created network. We show that our method results generally in more relevant networks. Consequently, considering robustness as a design principle of biological networks can result in more realistic models.  相似文献   
29.
As an enzyme acting at the junction of gluconeogenic pathway, phosphoenolpyruvate carboxykinase (PEPCK) controls substrate flow from Krebs cycle toward glucose production. Therefore, it would be advantageous to design effective inhibitors to inactivate PEPCK in diabetes mellitus and other abnormalities caused by insulin resistance. Such inhibitors may compensate the metabolic consequences of ex-activity of PEPCK at these conditions. Understanding the mechanism by which inhibitors exert their effect on enzyme activity is of great interest for designing stronger inhibitors. In the present work, molecular dynamic simulations were used to study enzyme-inhibitor interactions. Our results indicate that inhibitors of PEPCK with their short chains interact with enzyme active site through non-covalent interactions of electrostatic and hydrogen bond nature. The data also show that inhibitors neither reach a stable state in their binding site nor make static complex with the enzyme active site. Instead, they interact with functional groups of active site residues in a dynamic fashion. In this way, oxalate and sulfoacetate carrying two negative groups of higher charge density and optimum spacing from each other, show more dynamic behavior (lower stability in their binding site) and more inhibitory effects than other inhibitors used (phosphonoformate, phosphoglycolate and 3-phosphonopropionate).  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号