首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   24篇
  303篇
  2024年   1篇
  2023年   1篇
  2022年   11篇
  2021年   14篇
  2020年   12篇
  2019年   21篇
  2018年   19篇
  2017年   15篇
  2016年   16篇
  2015年   14篇
  2014年   25篇
  2013年   36篇
  2012年   25篇
  2011年   22篇
  2010年   10篇
  2009年   9篇
  2008年   15篇
  2007年   11篇
  2006年   5篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   6篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1995年   1篇
排序方式: 共有303条查询结果,搜索用时 0 毫秒
61.
62.

A hybrid plasmonic-dielectric metasurface is proposed in order to manipulate beam propagation in desired manners. The metasurface is composed of patterned hybrid graphene-silicon nano-disks deposited on a low-index substrate, namely silica. It is shown that the proposed hybrid metasurface simultaneously benefits from the advantages of graphene-based metasurfaces and dielectric ones. Specially, we show that the proposed hybrid metasurface not only provides reconfigurability, just like previously proposed graphene-based metasurfaces, but also similar to dielectric metasurfaces, is of low loss and CMOS-compatible. Such exceptional features give the metasurface exceptional potentials to realize high efficient optical components. To demonstrate the latter point, focusing and anomalous reflection are performed making use of the proposed hybrid structure as examples of two well-known optical functionalities. This work opens up a new route in realization of reconfigurable meta-devices with widely real-world applications which cannot be achieved with their passive counterparts.

  相似文献   
63.
64.
Toll-like receptors (TLRs) are crucial activators of inflammatory responses, they are considered immune receptors. TLRs are of fundamental importance in the pathophysiology of disorders related to inflammation including neurodegenerative diseases and cancer. Melatonin is a beneficial agent in the treatment of inflammatory and immune disorders. Melatonin is potent anti-inflammatory hormone that regulates various molecular pathways. Withal, limited studies have evaluated the inhibitory role of melatonin on TLRs. This review summarizes the current knowledge related to the effects of melatonin on TLRs in some common inflammatory and immunity disorders.  相似文献   
65.
66.
Inhibition of Mdm2 function is a validated approach to restore p53 activity for cancer therapy; nevertheless, inhibitors of Mdm2 such as Nutlin-3 have certain limitations, suggesting that additional targets in this pathway need to be further elucidated. Our finding that the Herpesvirus-Associated Ubiquitin-Specific Protease (HAUSP, also called USP7) interacts with the p53/Mdm2 protein complex, was one of the first examples that deubiquitinases (DUBs) exhibit a specific role in regulating protein stability. Here, we show that inhibitors of HAUSP and Nutlin-3 can synergistically activate p53 function and induce p53-dependent apoptosis in human cancer cells. Notably, HAUSP can also target the N-Myc oncoprotein in a p53-independent manner. Moreover, newly synthesized HAUSP inhibitors are more potent than the commercially available inhibitors to suppress N-Myc activities in p53 mutant cells for growth suppression. Taken together, our study demonstrates the utility of HAUSP inhibitors to target cancers in both a p53-depdentent and -independent manner.  相似文献   
67.
Quinolinic acid (QA), a downstream neurometabolite in the kynurenine pathway, the biosynthetic pathway of tryptophan, is associated with neurodegenerative diseases pathology. Mutations in genes encoding kynurenine pathway enzymes, which control the level of QA production, are linked with elevated risk of developing Parkinson's disease. Recent findings have revealed the accumulation and deposition of QA in post-mortem samples, as well as in cellular models of Alzheimer's disease and related disorders. Furthermore, intrastriatal inoculation of mice with QA results in increased levels of phosphorylated α-synuclein and neurodegenerative pathological and behavioral characteristics. However, the cellular and molecular mechanisms underlying the involvement of QA accumulation in protein aggregation and neurodegeneration remain elusive. We recently established that self-assembled ordered structures are formed by various metabolites and hypothesized that these “metabolite amyloids” may seed amyloidogenic proteins. Here we demonstrate the formation of QA amyloid-like fibrillar assemblies and seeding of α-synuclein aggregation by these nanostructures both in vitro and in cell culture. Notably, α-synuclein aggregation kinetics was accelerated by an order of magnitude. Additional amyloid-like properties of QA assemblies were demonstrated using thioflavin T assay, powder X-ray diffraction and cell apoptosis analysis. Moreover, fluorescently labeled QA assemblies were internalized by neuronal cells and co-localized with α-synuclein aggregates. In addition, we observed cell-to-cell propagation of fluorescently labeled QA assemblies in a co-culture of treated and untreated cells. Our findings suggest that excess QA levels, due to mutations in the kynurenine pathway, for example, may lead to the formation of metabolite assemblies that seed α-synuclein aggregation, resulting in neuronal toxicity and induction of Parkinson's disease.  相似文献   
68.
69.
70.
A new species of mite is described from Iran, Laelaspisella elsae sp. n. (Acari: Laelapidae). The new species was collected from bark of elm trees in Isfahan province. A revised diagnosis for Laelaspisella, as well as a key to the world species of the genus, are presented. Two species groups of Laelaspisella are proposed: those with seta pd3 on genu I and those without pd3 on genu I. Pseudoparasitus (Gymnolaelaps) tonsilis Karg, 1989a is transferred to Laelaspisella, based on its hypertrichous holodorsal shield, metasternal setae st4 absent and genu IV with ten setae. The problems with Laelaspisella canestrinii are explained and Laelaspisella canestrinii sensu Berlese (1903), (1904) and Costa (1962) is provided with a new name, Laelaspisella berlesei Joharchi, nom. n.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号