首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   276篇
  免费   24篇
  2023年   1篇
  2022年   9篇
  2021年   14篇
  2020年   12篇
  2019年   21篇
  2018年   19篇
  2017年   15篇
  2016年   16篇
  2015年   14篇
  2014年   25篇
  2013年   36篇
  2012年   25篇
  2011年   22篇
  2010年   10篇
  2009年   9篇
  2008年   15篇
  2007年   11篇
  2006年   5篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   6篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1995年   1篇
排序方式: 共有300条查询结果,搜索用时 234 毫秒
121.
Respiratory tolerance is inhibited by the administration of corticosteroids   总被引:3,自引:0,他引:3  
Corticosteroids constitute the most effective current anti-inflammatory therapy for acute and chronic forms of allergic diseases and asthma. Corticosteroids are highly effective in inhibiting the effector function of Th2 cells, eosinophils, and epithelial cells. However, treatment with corticosteroids may also limit beneficial T cell responses, including respiratory tolerance and the development of regulatory T cells (T(Reg)), which actively suppress inflammation in allergic diseases. To examine this possibility, we investigated the effects of corticosteroid administration on the development of respiratory tolerance. Respiratory exposure to Ag-induced T cell tolerance and prevented the subsequent development of allergen-induced airway hyperreactivity. However, treatment with dexamethasone during the delivery of respiratory Ag prevented tolerance, such that allergen sensitization and severe airway hyperreactivity subsequently occurred. Treatment with dexamethasone during respiratory exposure to allergen eliminated the development of IL-10-secreting dendritic cells, which was required for the induction of IL-10-producing allergen-specific T(Reg) cells. Therefore, because allergen-specific T(Reg) cells normally develop to prevent allergic disease and asthma, our results suggest that treatment with corticosteroids, which limit the development of T(Reg) cells and tolerance to allergens, could enhance subsequent Th2 responses and aggravate the long-term course of allergic diseases and asthma.  相似文献   
122.
123.
Mechanical stimuli acting on the cellular membrane are linked to intracellular signaling events and downstream effectors via different mechanoreceptors. Mechanosensitive (MS) ion channels are the fastest known primary mechano-electrical transducers, which convert mechanical stimuli into meaningful intracellular signals on a submillisecond time scale. Much of our understanding of the biophysical principles that underlie and regulate conversion of mechanical force into conformational changes in MS channels comes from studies based on MS channel reconstitution into lipid bilayers. The bilayer reconstitution methods have enabled researchers to investigate the structure-function relationship in MS channels and probe their specific interactions with their membrane lipid environment. This brief review focuses on close interactions between MS channels and the lipid bilayer and emphasizes the central role that the transbilayer pressure profile plays in mechanosensitivity and gating of these fascinating membrane proteins.  相似文献   
124.
The production of recombinant vitamin K dependent (VKD) proteins for therapeutic purposes is an important challenge in the pharmaceutical industry. These proteins are primarily synthesized as precursor molecules and contain pre–propeptide sequences. The propeptide is connected to γ‐carboxylase enzyme through the γ‐carboxylase recognition site for the direct γ‐carboxylation of VKD proteins that has a significant impact on their biological activity. Propeptides have different attitudes toward γ‐carboxylase and certain amino acids in propeptide sequences are responsible for the differences in γ‐carboxylase affinity. By aiming to replace amino acids in hFIX propeptide domain based on the prothrombin propeptide, pMT‐hFIX‐M14 expression cassette, containing cDNA of hFIX with substituted ?14 residues (Asp to Ala) was made. After transfection of Drosophila S2 cells, expression of the active hFIX was analyzed by performing ELISA and coagulation test. A 1.4‐fold increase in the mutant recombinant hFIX expression level was observed in comparison with that of a native recombinant hFIX. The enhanced hFIX activity and specific activity of the hFIXD‐14A (2.2 and 1.6 times, respectively) were further confirmed by comparing coagulation activity levels of substituted and native hFIX. Enrichment for functional, fully γ‐carboxylated hFIX species via barium citrate adsorption demonstrated 2‐fold enhanced recovery in the S2‐expressing hFIXD‐14A relative to that expressed native hFIX. These results show that changing ?14 residues leads to a decrease in the binding affinity to substrate, increase in γ‐carboxylation and activity of recombinant hFIX. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:515–520, 2018  相似文献   
125.
Morphological scaling relationships between organ and body size—also known as allometries—describe the shape of a species, and the evolution of such scaling relationships is central to the generation of morphological diversity. Despite extensive modeling and empirical tests, however, the modes of selection that generate changes in scaling remain largely unknown. Here, we mathematically model the evolution of the group‐level scaling as an emergent property of individual‐level variation in the developmental mechanisms that regulate trait and body size. We show that these mechanisms generate a “cryptic individual scaling relationship” unique to each genotype in a population, which determines body and trait size expressed by each individual, depending on developmental nutrition. We find that populations may have identical population‐level allometries but very different underlying patterns of cryptic individual scaling relationships. Consequently, two populations with apparently the same morphological scaling relationship may respond very differently to the same form of selection. By focusing on the developmental mechanisms that regulate trait size and the patterns of cryptic individual scaling relationships they produce, our approach reveals the forms of selection that should be most effective in altering morphological scaling, and directs researcher attention on the actual, hitherto overlooked, targets of selection.  相似文献   
126.
127.
128.
129.
Previous research has shown that interacting with natural environments vs. more urban or built environments can have salubrious psychological effects, such as improvements in attention and memory. Even viewing pictures of nature vs. pictures of built environments can produce similar effects. A major question is: What is it about natural environments that produces these benefits? Problematically, there are many differing qualities between natural and urban environments, making it difficult to narrow down the dimensions of nature that may lead to these benefits. In this study, we set out to uncover visual features that related to individuals'' perceptions of naturalness in images. We quantified naturalness in two ways: first, implicitly using a multidimensional scaling analysis and second, explicitly with direct naturalness ratings. Features that seemed most related to perceptions of naturalness were related to the density of contrast changes in the scene, the density of straight lines in the scene, the average color saturation in the scene and the average hue diversity in the scene. We then trained a machine-learning algorithm to predict whether a scene was perceived as being natural or not based on these low-level visual features and we could do so with 81% accuracy. As such we were able to reliably predict subjective perceptions of naturalness with objective low-level visual features. Our results can be used in future studies to determine if these features, which are related to naturalness, may also lead to the benefits attained from interacting with nature.  相似文献   
130.
Among the progressive neurodegenerative disorders, Parkinson's disease (PD) is the second most common. Different factors have critical role in pathophysiology of PD such as apoptosis pathways, inflammatory cytokines, oxidative stress, and neurotransmitters and its receptors abnormalities. Acupuncture and electroacupuncture were considered as nondrug therapies for PD. Although numerous studies has been conducted for assessing the mechanism underlying electroacupuncture and acupuncture, various principal aspects of these treatment procedures remain not well-known. There have also been few investigations on the molecular mechanism of acupuncture and electroacupuncture therapy effects in PD. This review evaluates the effects of electroacupuncture and acupuncture on the molecular mechanism in PD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号