首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2364篇
  免费   335篇
  2699篇
  2022年   15篇
  2021年   30篇
  2020年   23篇
  2019年   23篇
  2018年   34篇
  2017年   23篇
  2016年   57篇
  2015年   90篇
  2014年   121篇
  2013年   116篇
  2012年   114篇
  2011年   116篇
  2010年   93篇
  2009年   81篇
  2008年   110篇
  2007年   115篇
  2006年   72篇
  2005年   92篇
  2004年   95篇
  2003年   97篇
  2002年   98篇
  2001年   88篇
  2000年   84篇
  1999年   65篇
  1998年   33篇
  1997年   31篇
  1996年   36篇
  1995年   34篇
  1994年   37篇
  1993年   30篇
  1992年   66篇
  1991年   58篇
  1990年   45篇
  1989年   54篇
  1988年   39篇
  1987年   26篇
  1986年   33篇
  1985年   32篇
  1984年   23篇
  1983年   18篇
  1982年   19篇
  1981年   20篇
  1980年   16篇
  1979年   14篇
  1978年   18篇
  1975年   18篇
  1974年   17篇
  1973年   14篇
  1972年   11篇
  1968年   13篇
排序方式: 共有2699条查询结果,搜索用时 0 毫秒
91.
92.
Plasma membrane H+‐ATPase pumps build up the electrochemical H+ gradients that energize most other transport processes into and out of plant cells through channel proteins and secondary active carriers. In Arabidopsis thaliana, the AUTOINHIBITED PLASMA MEMBRANE H+‐ATPases AHA1, AHA2 and AHA7 are predominant in root epidermal cells. In contrast to other H+‐ATPases, we find that AHA7 is autoinhibited by a sequence present in the extracellular loop between transmembrane segments 7 and 8. Autoinhibition of pump activity was regulated by extracellular pH, suggesting negative feedback regulation of AHA7 during establishment of an H+ gradient. Due to genetic redundancy, it has proven difficult to test the role of AHA2 and AHA7, and mutant phenotypes have previously only been observed under nutrient stress conditions. Here, we investigated root and root hair growth under normal conditions in single and double mutants of AHA2 and AHA7. We find that AHA2 drives root cell expansion during growth but that, unexpectedly, restriction of root hair elongation is dependent on AHA2 and AHA7, with each having different roles in this process.  相似文献   
93.
94.
95.
Recent developments in restricted-access media (RAM) liquid chromatography make the simultaneous determination of total and free phenytoin concentrations possible by direct injection of drug-containing serum samples. A comparison of phenytoin free fraction determination by ultrafiltration coupled with fluorescence polarization immunoassay (TDX) to an improved direct injection RAM-HPLC method is presented. Our improved method differs from those previously reported with regard to column type, mobile-phase composition, and column temperature. Replicate samples analyzed by each method yielded similar values for serum phenytoin free fraction.  相似文献   
96.
Proton-coupled oligopeptide transporters (POTs) utilize the electrochemical proton gradient to facilitate uptake of di- or tripeptide molecules. YjdL is one of four POTs found in Escherichia coli. It has shown an extraordinary preference for di- rather than tripeptides, and is therefore significantly different from prototypical POTs such as the human hPepT1. Nonetheless YjdL contains several highly conserved POT residues, which include Glu388 that is located in the putative substrate binding cavity. Here we present biophysical characterization of WT-YjdL and Glu388Gln. Isothermal titration calorimetrical studies exhibit a Kd of 14 μM for binding of Ala-Lys to WT-YjdL. Expectedly, no binding could be detected for the tripeptide Ala-Ala-Lys. Surprisingly however, binding could not be detected for Ala-Gln, although earlier studies indicated inhibitory potencies of Ala-Gln to be comparable to Ala-Lys (IC50 values of 0.6 compared to 0.3 mM). Finally, Ala-Lys binding to Glu388Gln was also undetectable which may support a previously suggested role in interaction with the ligand peptide N-terminus.  相似文献   
97.
98.
Shoot elongation in woody plants is modulated by a multitude of light signals, including irradiance, photoperiod and spectral composition, for which the phytochrome system is the probable photoreceptor. In hybrid aspen ( Populus tremula  ×  tremuloides ) overexpression of the oat phytochrome A ( PHYA ) prevents growth cessation in response to short photoperiod, and plants exhibit dwarf growth that is related to reduced cell numbers and reduced gibberellin contents. End-of-day far-red treatment significantly enhances internode elongation in PHYA overexpressors as well as in the wild type, and this was found here to be caused by stimulation of cell division and cell extension. In PHYA overexpressors the effects were substantially larger than in the wild type, and resulted in complete restoration of wild type-like plant length as well as cell numbers, and gibberellin content was greatly increased. No clear effect of far-red end-of-day treatment on gibberellin levels could be detected in the wild type. It thus appears that the far-red end-of-day treatment might modify the responsiveness of the tissue to GA rather than the GA levels. The observed effects were completely reversed by a subsequent irradiation with red light. The present data show that dwarfism due to PHYA overexpression can be completely overcome by far red end-of-day treatment, and the observations indicate that effects of far red end-of-day treatments appear to be mediated by phytochrome(s) other than phytochrome A.  相似文献   
99.
The production of extracellular enzymes by the thermophilic fungus Thermomyces lanuginosus was studied in chemostat cultures at a dilution rate of 0.08 h–1 in relation to variation in the ammonium concentration in the feed medium. Under steady state conditions, three growth regimes were recognised and the production of several extracellular enzymes from T. lanuginosus was recorded under different nutrient limitations ranging from nitrogen limitation to carbon/energy limitation. The range and the production of carbohydrate hydrolysing enzymes and lipase increased from Regime I (NH4Cl 600 mg l–1) to Regime III (NH4CI 1200 mg l–1), whereas production of protease was highest in Regime II (600 mg l–1 < NH4Cl <1200 mg l–1).  相似文献   
100.
Ornithine decarboxylase (ODC), the first rate-limiting enzyme in the polyamine biosynthesis is one of the most rapidly degraded proteins in eukaryotic cells. Mammalian ODC is a notable exception to the widely accepted dogma that ubiquitination is always required for targeting a protein to degradation by the 26S proteasome. However, while it is well established that in mammalian cells degradation of ODC is ubiquitin independent, the requirement of ubiquitination for degradation of ODC in yeast cells remained undetermined. We have investigated ODC degradation in three mutant strains of Saccharomyces cerevisiae in which ubiquitin-dependent protein degradation activity is severely compromised. While yeast ODC was rapidly degraded in all these mutant strains the degradation of N-end rule substrates was inhibited. A mutant mouse ODC that fails to interact with Az was rapidly degraded in yeast cells but was stable in mammalian cells suggesting that interaction with a mammalian Az like yeast protein is not necessary for the degradation of ODC in yeast cells. Deletion analysis revealed that sequences from its unique N-terminus are involved in targeting yeast ODC to rapid degradation in yeast cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号