首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   658篇
  免费   46篇
  国内免费   1篇
  705篇
  2022年   6篇
  2021年   5篇
  2020年   3篇
  2019年   6篇
  2018年   6篇
  2017年   10篇
  2016年   26篇
  2015年   21篇
  2014年   37篇
  2013年   38篇
  2012年   30篇
  2011年   34篇
  2010年   23篇
  2009年   20篇
  2008年   28篇
  2007年   31篇
  2006年   26篇
  2005年   30篇
  2004年   26篇
  2003年   34篇
  2002年   39篇
  2001年   8篇
  2000年   4篇
  1999年   6篇
  1997年   7篇
  1996年   9篇
  1995年   5篇
  1994年   9篇
  1993年   10篇
  1992年   8篇
  1991年   7篇
  1990年   6篇
  1989年   3篇
  1988年   8篇
  1987年   5篇
  1986年   3篇
  1985年   10篇
  1984年   10篇
  1983年   9篇
  1982年   7篇
  1981年   9篇
  1980年   11篇
  1979年   5篇
  1978年   9篇
  1977年   5篇
  1975年   4篇
  1974年   4篇
  1973年   3篇
  1971年   4篇
  1966年   4篇
排序方式: 共有705条查询结果,搜索用时 0 毫秒
61.
Citrate synthase (CS) is often used in chaperone assays since this thermosensitive enzyme aggregates at moderately increased temperatures. Small heat shock proteins (sHsps) are molecular chaperones specialized in preventing the aggregation of other proteins, termed substrate proteins, under conditions of transient heat stress. To investigate the mechanism whereby sHsps bind to and stabilize a substrate protein, we here used peptide array screening covering the sequence of porcine CS (P00889). Strong binding of sHsps was detected to a peptide corresponding to the most N-terminal α-helix in CS (amino acids Leu13 to Gln27). The N-terminal α-helices in the CS dimer intertwine with the C-terminus in the other subunit and together form a stem-like structure which is protruding from the CS dimer. This stem-like structure is absent in thermostable forms of CS from thermophilic archaebacteria like Pyrococcus furiosus and Sulfolobus solfatacarium. These data therefore suggest that thermostabilization of thermosensitive CS by sHsps is achieved by stabilization of the C- and N-terminae in the protruding thermosensitive softspot, which is absent in thermostable forms of the CS dimer.  相似文献   
62.
A poly(ethylene glycol) (PEG)-based matrix for studies of affinity interactions is developed and demonstrated. The PEG matrix, less than 0.1 microm thick, is graft copolymerized onto a cycloolefin polymer from a mixture of PEG methacrylates using a free radical reaction initiated by UV light at 254 nm. The grafting process is monitored in real time, and characteristics such as thickness, homogeneity, relative composition, photostability, and performance in terms of protein resistance in complex biofluids and sensor qualities are investigated with null ellipsometry, infrared spectroscopy, and surface plasmon resonance. The matrix is subsequently modified to contain carboxyl groups, thereby making it possible to immobilize ligands in a controlled and functional manner. Human serum albumin and fibrinogen are immobilized and successfully detected by antibody recognition using surface plasmon resonance. The results are encouraging and suggest that the PEG matrix is suitable for biochip and biosensor applications in demanding biofluids.  相似文献   
63.
Unfolding proteins are prevented from irreversible aggregation by small heat shock proteins (sHsps) through interactions that depend on a dynamic equilibrium between sHsp subunits and sHsp oligomers. A chloroplast-localized sHsp, Hsp21, provides protection to client proteins to increase plant stress resistance. Structural information is lacking concerning the oligomeric conformation of this sHsp. We here present a structure model of Arabidopsis thaliana Hsp21, obtained by homology modeling, single-particle electron microscopy, and lysine-specific chemical crosslinking. The model shows that the Hsp21 subunits are arranged in two hexameric discs, similar to a cytosolic plant sHsp homolog that has been structurally determined after crystallization. However, the two hexameric discs of Hsp21 are rotated by 25° in relation to each other, suggesting a role for global dynamics in dodecamer function.  相似文献   
64.
We have carried out molecular dynamics simulations of the tRNA anticodon and mRNA codon, inside the ribosome, to study the effect of the common tRNA modifications cmo(5)U34 and m(6)A37. In tRNA(Val), these modifications allow all four nucleotides to be successfully read at the wobble position in a codon. Previous data suggest that entropic effects are mainly responsible for the extended reading capabilities, but detailed mechanisms have remained unknown. We have performed a wide range of simulations to elucidate the details of these mechanisms at the atomic level and quantify their effects: extensive free energy perturbation coupled with umbrella sampling, entropy calculations of tRNA (free and bound to the ribosome), and thorough structural analysis of the ribosomal decoding center. No prestructuring effect on the tRNA anticodon stem-loop from the two modifications could be observed, but we identified two mechanisms that may contribute to the expanded decoding capability by the modifications: The further reach of the cmo(5)U34 allows an alternative outer conformation to be formed for the noncognate base pairs, and the modification results in increased contacts between tRNA, mRNA, and the ribosome.  相似文献   
65.
It is an established fact that allelic variation and post-translational modifications create different variants of proteins, which are observed as isoelectric and size subspecies in two-dimensional gel based proteomics. Here we explore the stromal proteome of spinach and Arabidopsis chloroplast and show that clustering of mass spectra is a useful tool for investigating such variants and detecting modified peptides with amino acid substitutions or post-translational modifications. This study employs data mining by hierarchical clustering of MALDI-MS spectra, using the web version of the SPECLUST program (http://bioinfo.thep.lu.se/speclust.html). The tool can also be used to remove peaks of contaminating proteins and to improve protein identification, especially for species without a fully sequenced genome. Mutually exclusive peptide peaks within a cluster provide a good starting point for MS/MS investigation of modified peptides, here exemplified by the identification of an A to E substitution that accounts for the isoelectric heterogeneity in protein isoforms.  相似文献   
66.
67.
The predicted global warming may affect freshwater systems at several organizational levels, from organism to ecosystem. Specifically, in temperate regions, the projected increase of winter temperatures may have important effects on the over-winter biology of a range of organisms and especially for fish and other ectothermic animals. However, temperature effects on organisms may be directed strongly by resource availability. Here, we investigated whether over-winter loss of biomass and lipid content of juvenile roach (Rutilus rutilus) was affected by the physiologically relatively small (2-5 °C) changes of winter temperatures predicted by the Intergovernmental Panel on Climate Change (IPCC), under both natural and experimental conditions. This was investigated in combination with the effects of food availability. Finally, we explored the potential for a correlation between lake temperature and resource levels for planktivorous fish, i.e., zooplankton biomass, during five consecutive winters in a south Swedish lake. We show that small increases in temperature (+2 °C) affected fish biomass loss in both presence and absence of food, but negatively and positively respectively. Temperature alone explained only a minor part of the variation when food availability was not taken into account. In contrast to other studies, lipid analyses of experimental fish suggest that critical somatic condition rather than critical lipid content determined starvation induced mortality. Our results illustrate the importance of considering not only changes in temperature when predicting organism response to climate change but also food-web interactions, such as resource availability and predation. However, as exemplified by our finding that zooplankton over-winter biomass in the lake was not related to over-winter temperature, this may not be a straightforward task.  相似文献   
68.
69.
70.
Stomatal closure by ultraviolet radiation   总被引:5,自引:0,他引:5  
The effect of ultraviolet radiation (UV) (255–325 nm) on stomatal closure was investigated on tef [ Eragrostis tef (Zucc) Trotter] in the presence of white light (ca 50 ·mol m−2 s−1). The action spectrum showed that UV (ca 2 ·mol m−2 s−1, half band width about 10 nm) of 285 nm or shorter wavelengths was very efficient in causing stomatal closure. The effectiveness decreased sharply towards longer wavelengths. Radiation of 313 nm or longer wavelengths was practically without effect. Increasing UV intensity increased stomatal resistance. When stronger white light (5 to 9 times stronger than the one used during irradiation) was administered, stomates re-opened rapidly irrespective of whether the UV was on or off, although a subsequent gradual closing tendency was observed when the UV was on.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号