首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8543篇
  免费   605篇
  国内免费   3篇
  9151篇
  2023年   37篇
  2022年   74篇
  2021年   159篇
  2020年   72篇
  2019年   123篇
  2018年   139篇
  2017年   113篇
  2016年   197篇
  2015年   341篇
  2014年   437篇
  2013年   577篇
  2012年   807篇
  2011年   1361篇
  2010年   685篇
  2009年   744篇
  2008年   465篇
  2007年   438篇
  2006年   419篇
  2005年   386篇
  2004年   341篇
  2003年   317篇
  2002年   305篇
  2001年   48篇
  2000年   58篇
  1999年   73篇
  1998年   63篇
  1997年   42篇
  1996年   35篇
  1995年   36篇
  1994年   31篇
  1993年   28篇
  1992年   21篇
  1991年   14篇
  1990年   15篇
  1989年   17篇
  1988年   10篇
  1987年   18篇
  1986年   16篇
  1985年   9篇
  1983年   13篇
  1981年   3篇
  1980年   13篇
  1979年   7篇
  1978年   8篇
  1977年   9篇
  1975年   5篇
  1974年   4篇
  1972年   2篇
  1970年   2篇
  1965年   2篇
排序方式: 共有9151条查询结果,搜索用时 15 毫秒
91.
Exogenous mechanical perturbations on living tissues are commonly used to investigate whether cell effectors can respond to mechanical cues. However, in most of these experiments, the applied mechanical stress and/or the biological response are described only qualitatively. We developed a quantitative pipeline based on microindentation and image analysis to investigate the impact of a controlled and prolonged compression on microtubule behaviour in the Arabidopsis shoot apical meristem, using microtubule fluorescent marker lines. We found that a compressive stress, in the order of magnitude of turgor pressure, induced apparent microtubule bundling. Importantly, that response could be reversed several hours after the release of compression. Next, we tested the contribution of microtubule severing to compression‐induced bundling: microtubule bundling seemed less pronounced in the katanin mutant, in which microtubule severing is dramatically reduced. Conversely, some microtubule bundles could still be observed 16 h after the release of compression in the spiral2 mutant, in which severing rate is instead increased. To quantify the impact of mechanical stress on anisotropy and orientation of microtubule arrays, we used the nematic tensor based FibrilTool ImageJ/Fiji plugin. To assess the degree of apparent bundling of the network, we developed several methods, some of which were borrowed from geostatistics. The final microtubule bundling response could notably be related to tissue growth velocity that was recorded by the indenter during compression. Because both input and output are quantified, this pipeline is an initial step towards correlating more precisely the cytoskeleton response to mechanical stress in living tissues.  相似文献   
92.
The major DNA photoproduct in UV-irradiated Bacillus subtilis spores is the thymine dimer named spore photoproduct (SP, 5-(alpha-thyminyl)-5,6-dihydrothymine). The SP lesion has been found to be efficiently repaired by SP lyase (SPL) a very specific enzyme that reverses the SP to two intact thymines, at the origin of the great resistance of the spores to UV irradiation. SPL belongs to a superfamily of [4Fe-4S] iron-sulfur enzymes, called "Radical-SAM." Here, we show that the single substitution of cysteine 141 into alanine, a residue fully conserved in Bacillus species and previously shown to be essential for spore DNA repair in vivo, has a major impact on the outcome of the SPL-dependent repair reaction in vitro. Indeed the modified enzyme catalyzes the almost quantitative conversion of the SP lesion into one thymine and one thymine sulfinic acid derivative. This compound results from the trapping of the allyl-type radical intermediate by dithionite, used as reducing agent in the reaction mixture. Implications of the data reported here regarding the repair mechanism and the role of Cys-141 are discussed.  相似文献   
93.
To contribute to the identification of methanogens, methanotrophs and sulfate-reducing bacteria (SRB) in microbial communities from the 13 degrees N (East Pacific Rise) and Rainbow (Mid-Atlantic Ridge) hydrothermal vent fields, we investigated the diversity of mcrA, pmoA and dsrAB genes sequences. Clone libraries were obtained using DNA isolated from fragments of diffuse vents, sediment and in situ samplers. The clones were categorized by restriction fragment length polymorphism, and representatives of each group were sequenced. Sequences were related to that of hyperthermophilic (order Methanopyrales and family Methanocaldococcaceae), thermophilic and mesophilic (family Methanococcaceae) methanogens, thermophilic (proposed genus 'Methylothermus') and mesophilic type I methanotrophs, and hyperthermophilic (order Archaeoglobales), thermophilic (order Thermodesulfobacteriales) and mesophilic (family Desulfobulbaceae) SRB. Several of the obtained sequences were distantly related to the genes of cultivated organisms, providing evidence of the existence of novel lineages in the three functional groups. This study provides for the first time an insight into the diversity of several functional genes of deep-sea hydrothermal system microorganisms.  相似文献   
94.
We tested the hypothesis that parental effort modulates the magnitude of corticosterone and prolactin responses to stress in a long-lived bird, the Black-legged kittiwake (Rissa tridactyla). To do so, we compared corticosterone and prolactin responses to capture/restraint stress between chick-rearing birds and failed breeders (no parental effort). We predicted that (1) the increase in plasma corticosterone levels in response to stress should be lower in chick-rearing birds, (2) the decrease in plasma prolactin levels in response to stress should be lower in chick-rearing birds, and (3) as both sexes care for the chick, there should be no sex difference in the hormonal response to stress. Baseline plasma corticosterone and prolactin levels were higher in chick-rearing birds and were not influenced by body condition. Failed breeders were in better condition than chick-rearing individuals. Corticosterone response to stress was unaffected by parental effort as both chick-rearing and failed birds exhibited a robust corticosterone increase. Prolactin response to stress was however clearly influenced by parental effort: chick-rearing birds showed a modest 9% prolactin decrease whereas in failed birds prolactin concentrations fell by 41%. Body condition did not influence hormonal responses to stress. When facing stressful condition, breeding kittiwakes attenuate their prolactin response to stress while enhancing their secretion of corticosterone. Increasing corticosterone secretion triggers foraging efforts and diminishes nest attendance whereas an attenuation of prolactin response to stress maintains parental behavior. We suggest that this hormonal mechanism facilitates a flexible time-budget that has been interpreted as a buffer against environmental variability.  相似文献   
95.
A study was conducted to compare the ensiling characteristics, chemical composition, and the ruminal and total tract nutrient degradabilities of leafy (Cargill F227) and brown midrib (Mycogen TMF94) corn silage hybrids. Corn was grown in Saint-Jean-sur-Richelieu, Quebec, Canada, harvested at a target 350 g kg(-1) dry matter (DM) content, and ensiled in mini-silos for 0, 2, 4, 8, 16, and 45 d. Two non-lactating Holstein cows fitted with ruminal and proximal duodenal cannulae were used to determine ruminal and whole tract nutrient degradability. Forage from both hybrids went through a rapid fermentation with a sharp decline in pH during the first 2 d of ensiling, pH in both silage being less than 4.0 after 45 d. Lactic acid concentration was however greater for leafy than brown midrib corn. Chemical analysis of silage after 45 d of ensiling revealed that hybrids differed in their composition. Compared to leafy corn, brown midrib corn had lower neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), crude protein (CP), and neutral detergent and acid detergent insoluble proteins, but higher starch and net energy of lactation (NEL) values. Results of the in situ incubation experiment indicated that compared to leafy corn brown midrib corn had greater ruminal DM (64 vs. 54%), CP (73 vs. 71%), and NDF (32 vs. 24%) degradabilities. Brown midrib corn silage also had greater DM ruminal (53 vs. 48%) and total tract (67 vs. 61%) digestibilities, as well as greater NDF ruminal (34 vs. 25%), intestinal (10 vs. 8%), and total tract (43 vs. 33%) digestibilities. Type of corn hybrid will thus greatly affect silage chemical composition and nutrient digestibility.  相似文献   
96.
Tumor cells release NKG2D ligands to evade NKG2D-mediated immune surveillance. The purpose of our investigation was to explore the cellular mechanisms of release used by various members of the ULBP family. Using biochemical and cellular approaches in both transfectant systems and tumor cell lines, this paper shows that ULBP1, ULBP2, and ULBP3 are released from cells with different kinetics and by distinct mechanisms. Whereas ULBP2 is mainly shed by metalloproteases, ULBP3 is abundantly released as part of membrane vesicles known as exosomes. Interestingly, exosomal ULBP3 protein is much more potent for down-modulation of the NKG2D receptor than soluble ULBP2 protein. This is the first report showing functionally relevant differences in the biochemistry of the three members of the ULBP family and confirms that in depth study of the biochemical features of individual NKG2D ligands will be necessary to understand and manipulate the biology of these proteins for therapy.  相似文献   
97.
Protein ubiquitylation is essential for many events linked to intracellular protein trafficking. Despite the significance of this process, the molecular mechanisms that govern the regulation of ubiquitylation remain largely unknown. Plasma membrane transporters are subjected to tightly regulated endocytosis, and ubiquitylation is a key signal at several stages of the endocytic pathway. The yeast monocarboxylate transporter Jen1 displays glucose-regulated endocytosis. We show here that casein kinase 1-dependent phosphorylation and HECT-ubiquitin ligase Rsp5-dependent ubiquitylation are required for Jen1 endocytosis. Ubiquitylation and endocytosis of Jen1 are induced within minutes in response to glucose addition. Jen1 is modified at the cell surface by oligo-ubiquitylation with ubiquitin-Lys63 linked chain(s), and Jen1-Lys338 is one of the target residues. Ubiquitin-Lys63-linked chain(s) are also required directly or indirectly to sort Jen1 into multivesicular bodies. Jen1 is one of the few examples for which ubiquitin-Lys63-linked chain(s) was shown to be required for correct trafficking at two stages of endocytosis: endocytic internalization and sorting at multivesicular bodies.Ubiquitylation is one of the most prevalent protein post-translational modifications in eukaryotes. In addition to its role in promoting proteasomal degradation of target proteins, ubiquitylation has been shown to regulate multiple processes, including DNA repair, signaling, and intracellular trafficking. Ubiquitylation serves as a key signal mediating the internalization of plasma membrane receptors and transporters, followed by their intracellular transport and subsequent recycling or lysosomal/vacuolar degradation (1, 2). In Saccharomyces cerevisiae, transporters usually display both constitutive and accelerated endocytosis regulated by factors such as excess substrate, changes in nutrient availability, and stress conditions. Ubiquitylation of these cell surface proteins acts as a signal triggering their internalization (1). A single essential E34 ubiquitin ligase, Rsp5, has been implicated in the internalization of most, if not all, endocytosed proteins (3). Rsp5 is the unique member in S. cerevisiae of the HECT (homologous to E6AP COOH terminus)-ubiquitin ligases of the Nedd4/Rsp5 family (4). In a few cases, Rsp5-dependent cell surface ubiquitylation was shown to involve PY-containing adapters that bind to Rsp5 (57). Rsp5-mediated ubiquitylation is also required for sorting into multivesicular bodies (MVBs) of endosomal membrane proteins that come from either the plasma membrane (through endocytosis) or the Golgi (through vacuolar protein sorting (VPS) pathway) (8). Although much progress has been made in elucidating the mechanistic basis of various steps in protein trafficking, the precise requirement for a specific type and length of Ub chains at various stages of the endocytic pathway remains to be addressed.The ubiquitin profile needed for proper internalization has been established for some yeast membrane proteins (1). The α-factor receptor Ste2 was described as undergoing monoubiquitylation on several lysines (multimonoubiquitylation). The a-factor receptor, Ste3p; the general transporter of amino acids, Gap1; the zinc transporter, Ztr1; and the uracil transporter, Fur4, have been shown to be modified by short chains of two to three ubiquitins, each attached to one, two, or more target lysine residues (oligo-ubiquitylation). Among them, Fur4 and Gap1 were the only transporters demonstrated to undergo plasma membrane oligo-ubiquitylation with ubiquitin residues linked via ubiquitin-Lys63 (9, 10). In addition, the two siderophore transporters Arn1 and Sit1 were also shown to undergo Lys63-linked cell surface ubiquitylation (11, 12). Whether these four transporters are representative of a larger class of plasma membrane substrates remains to be determined. Little is known about the type of ubiquitylation involved and/or required for sorting to MVBs. Some MVB cargoes appear to undergo monoubiquitylation (8), whereas Sna3, an MVB cargo of unknown function, undergoes Lys63-linked ubiquitylation (13). Lys63-linked ubiquitin chains were also recently reported to be required, directly or indirectly, for MVB sorting of the siderophore transporter, Sit1, when trafficking through the VPS pathway in the absence of its external substrate (11). In agreement with the possibility that additional membrane-bound proteins might undergo Lys63-linked ubiquitylation, a proteomic study aiming to uncover ubiquitylated yeast proteins showed that Lys63-ubiquitin chains are far more abundant than previously thought (14).The transport of monocarboxylates, such as lactate and pyruvate, as well as ketone bodies across the plasma membrane is essential for the metabolism of cells of various organisms. A family of monocarboxylate transporters has been reported that includes mainly mammalian members (15). In S. cerevisiae, two monocarboxylate-proton symporters have been described, Jen1 and Ady2 (16, 17). These transporters exhibit differences in their mechanisms of regulation and specificity. Jen1 is a lactate-pyruvate-acetate-propionate transporter induced in lactic or pyruvic acid-grown cells (18). Ady2, which accepts acetate, propionate, or formate, is present in cells grown in non-fermentable carbon sources (19). Jen1 has unique regulatory characteristics and has been extensively studied. It was the first secondary porter of S. cerevisiae characterized by heterologous expression in Pichia pastoris at both the cell and the membrane vesicle levels (20). The addition of glucose to lactic acid-grown cells very rapidly triggers loss of Jen1 activity and repression of JEN1 gene expression (21, 22). Newly synthesized Jen1-GFP fusion protein is sorted to the plasma membrane in an active and stable form, and loss of Jen1-GFP activity upon glucose addition is the result of its endocytosis followed by vacuolar degradation (23). Data from large scale analyses based on mass spectrometry approaches led to the detection of two sites of ubiquitylation for Jen1, one located in the N terminus of the protein and the second in the central loop (14), and several sites of phosphorylation in the N terminus, central loop, and C terminus of the protein (14, 24). In the present study, we aimed at further characterizing the internalization step of endocytosis of the transporter Jen1 and the potential role of the phosphorylation and ubiquitylation events required for its correct endocytic trafficking.  相似文献   
98.
Parasite populations do not necessarily conform to expected patterns of genetic diversity and structure. Parasitic plants may be more vulnerable to the negative consequences of landscape fragmentation because of their specialized life history strategies and dependence on host plants, which are themselves susceptible to genetic erosion and reduced fitness following habitat change. We used AFLP genetic markers to investigate the effects of habitat fragmentation on genetic diversity and structure within and among populations of hemiparasitic Viscum album. Comparing populations from two landscapes differing in the amount of forest fragmentation allowed us to directly quantify habitat fragmentation effects. Populations from both landscapes exhibited significant isolation-by-distance and sex ratios biased towards females. The less severely fragmented landscape had larger and less isolated populations, resulting in lower levels of population genetic structure (F ST = 0.05 vs. 0.09) and inbreeding (F IS = 0.13 vs. 0.27). Genetic differentiation between host-tree subpopulations was also higher in the more fragmented landscape. We found no significant differences in within-population gene diversity, percentage of polymorphic loci, or molecular variance between the two regions, nor did we find relationships between genetic diversity measures and germination success. Our results indicate that increasing habitat fragmentation negatively affects population genetic structure and levels of inbreeding in V. album, with the degree of isolation among populations exerting a stronger influence than forest patch size.  相似文献   
99.
Mesenchymal stem cells (MSC) are capable of both self-renewal and multi-lineage differentiation into mesoderm-type cells such as osteoblasts, chondrocytes, adipocytes and myocytes. Together the multipotent nature of MSCs and the facility to expand them in vitro make these cells ideal resources for regenerative medicine, particularly for bone reconstruction, and therefore research efforts focused on defining efficient protocols for directing their differentiation into the requisite lineage. Despite much progress in identifying mechanisms and factors that direct and control in vitro osteogenic differentiation of MSCs, a rapid and simple model to evaluate in vivo tissue formation is still lacking. Here, we describe the unique capacity of the murine bone marrow-derived D1 MSC cell line, which differentiates in vitro into at least three cell lineages, to form in vivo a structure resembling bone. This bone-like structure was obtained after subcutaneous grafting of D1 cells into immunocompetent mice without the need of neither an osteogenic factor nor scaffold material. These data allow us to propose this cell model as a tool for exploring in vivo the mechanisms and/or factors that govern and potentially regulate osteogenesis.  相似文献   
100.
The synthesis and biological evaluation of a number of differently substituted 3,6-diamino-1H-pyrazolo[3,4-b]pyridine derivatives are reported. From the inhibition results on a selection of disease-relevant protein kinases [IC50 (μM) DYRK1A = 11; CDK5 = 0.41; GSK-3 = 1.5] we have observed that 3,6-diamino-4-phenyl-1H-pyrazolo[3,4-b]pyridine-5-carbonitrile (4) constitutes a potential new and simple lead compound in the search of drugs for the treatment of Alzheimer’s disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号