首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6747篇
  免费   606篇
  国内免费   3篇
  2023年   30篇
  2022年   62篇
  2021年   159篇
  2020年   72篇
  2019年   124篇
  2018年   140篇
  2017年   113篇
  2016年   198篇
  2015年   344篇
  2014年   439篇
  2013年   537篇
  2012年   583篇
  2011年   577篇
  2010年   368篇
  2009年   342篇
  2008年   444篇
  2007年   429篇
  2006年   420篇
  2005年   388篇
  2004年   346篇
  2003年   319篇
  2002年   308篇
  2001年   46篇
  2000年   50篇
  1999年   71篇
  1998年   64篇
  1997年   42篇
  1996年   34篇
  1995年   37篇
  1994年   30篇
  1993年   28篇
  1992年   21篇
  1991年   14篇
  1990年   15篇
  1989年   17篇
  1988年   10篇
  1987年   19篇
  1986年   16篇
  1985年   9篇
  1983年   12篇
  1981年   4篇
  1980年   13篇
  1979年   7篇
  1978年   8篇
  1977年   9篇
  1975年   5篇
  1974年   4篇
  1970年   7篇
  1966年   2篇
  1965年   3篇
排序方式: 共有7356条查询结果,搜索用时 656 毫秒
171.
Cystic fibrosis (CF) airway epithelium is constantly subjected to injury events due to chronic infection and inflammation. Moreover, abnormalities in CF airway epithelium repair have been described and contribute to the lung function decline seen in CF patients. In the last past years, it has been proposed that anoctamin 1 (ANO1), a Ca2 +-activated Cl? channel, might offset the CFTR deficiency but this protein has not been characterized in CF airways. Interestingly, recent evidence indicates a role for ANO1 in cell proliferation and tumor growth. Our aims were to study non-CF and CF bronchial epithelial repair and to determine whether ANO1 is involved in airway epithelial repair. Here, we showed, with human bronchial epithelial cell lines and primary cells, that both cell proliferation and migration during epithelial repair are delayed in CF compared to non-CF cells. We then demonstrated that ANO1 Cl? channel activity was significantly decreased in CF versus non-CF cells. To explain this decreased Cl? channel activity in CF context, we compared ANO1 expression in non-CF vs. CF bronchial epithelial cell lines and primary cells, in lung explants from wild-type vs. F508del mice and non-CF vs. CF patients. In all these models, ANO1 expression was markedly lower in CF compared to non-CF. Finally, we established that ANO1 inhibition or overexpression was associated respectively with decreases and increases in cell proliferation and migration. In summary, our study demonstrates involvement of ANO1 decreased activity and expression in abnormal CF airway epithelial repair and suggests that ANO1 correction may improve this process.  相似文献   
172.
173.
Nucleo-cytoplasmic large DNA viruses (NCLDVs) constitute a group of eukaryotic viruses that can have crucial ecological roles in the sea by accelerating the turnover of their unicellular hosts or by causing diseases in animals. To better characterize the diversity, abundance and biogeography of marine NCLDVs, we analyzed 17 metagenomes derived from microbial samples (0.2–1.6 μm size range) collected during the Tara Oceans Expedition. The sample set includes ecosystems under-represented in previous studies, such as the Arabian Sea oxygen minimum zone (OMZ) and Indian Ocean lagoons. By combining computationally derived relative abundance and direct prokaryote cell counts, the abundance of NCLDVs was found to be in the order of 104–105 genomes ml−1 for the samples from the photic zone and 102–103 genomes ml−1 for the OMZ. The Megaviridae and Phycodnaviridae dominated the NCLDV populations in the metagenomes, although most of the reads classified in these families showed large divergence from known viral genomes. Our taxon co-occurrence analysis revealed a potential association between viruses of the Megaviridae family and eukaryotes related to oomycetes. In support of this predicted association, we identified six cases of lateral gene transfer between Megaviridae and oomycetes. Our results suggest that marine NCLDVs probably outnumber eukaryotic organisms in the photic layer (per given water mass) and that metagenomic sequence analyses promise to shed new light on the biodiversity of marine viruses and their interactions with potential hosts.  相似文献   
174.
This article documents the addition of 83 microsatellite marker loci and 96 pairs of single‐nucleotide polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Bembidion lampros, Inimicus japonicus, Lymnaea stagnalis, Panopea abbreviata, Pentadesma butyracea, Sycoscapter hirticola and Thanatephorus cucumeris (anamorph: Rhizoctonia solani). These loci were cross‐tested on the following species: Pentadesma grandifolia and Pentadesma reyndersii. This article also documents the addition of 96 sequencing primer pairs and 88 allele‐specific primers or probes for Plutella xylostella.  相似文献   
175.
176.
177.

Background

BANK1 and BLK belong to the pleiotropic autoimmune genes; recently, epistasis between BANK1 and BLK was detected in systemic lupus erythematosus. Although BLK has been reproducibly identified as a risk factor in rheumatoid arthritis (RA), reports are conflicting about the contribution of BANK1 to RA susceptibility. To ascertain the real impact of BANK1 on RA genetic susceptibility, we performed a large meta-analysis including our original data and tested for an epistatic interaction between BANK1 and BLK in RA susceptibility.

Patients and Methods

We investigated data for 1,915 RA patients and 1,915 ethnically matched healthy controls genotyped for BANK1 rs10516487 and rs3733197 and BLK rs13277113. The association of each SNP and RA was tested by logistic regression. Multivariate analysis was then used with an interaction term to test for an epistatic interaction between the SNPs in the 2 genes.

Results

None of the SNPs tested individually was significantly associated with RA in the genotyped samples. However, we detected an epistatic interaction between BANK1 rs3733197 and BLK rs13277113 (Pinteraction = 0.037). In individuals carrying the BLK rs13277113 GG genotype, presence of the BANK1 rs3733197 G allele increased the risk of RA (odds ratio 1.21 [95% confidence interval 1.04–1.41], P = 0.015. Combining our results with those of all other studies in a large trans-ethnic meta-analysis revealed an association of the BANK1 rs3733197 G allele and RA (1.11 [1.02–1.21], P = 0.012).

Conclusion

This study confirms BANK1 as an RA susceptibility gene and for the first time provides evidence for epistasis between BANK1 and BLK in RA. Our results illustrate the concept of pleiotropic epistatic interaction, suggesting that BANK1 and BLK might play a role in RA pathogenesis.  相似文献   
178.
Objective : Allelic variation (rs738409C→G) in adiponutrin (patatin‐like phospholipase domain‐containing protein 3, PNPLA3) has been associated with hepatic steatosis and liver fibrosis. The physiologic impact of the PNPLA3 G allele may be exacerbated in patients with severe obesity. In this study, we investigated the interactions of PNPLA3 rs738409 with a broad panel of metabolic and histologic characteristics of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis (NASH) in patients with medically complicated obesity. Design and Methods : Consecutive patients undergoing bariatric surgery were selected for a prospective study. They underwent extensive laboratory and histologic (liver biopsy) assessment, as well as evaluation of rs738409 polymorphism by TaqMan assay. Results : Only 12 (8.3%) of the 144 patients had normal liver histology, with 72 (50%) NASH, of whom 15 (10.4% of total patients) had fibrosis stage 2‐3. PNPLA3 GG genotype correlated positively (P < 0.05) with serum levels of alanine aminotransferase (ALT), asparate aminotransferase (AST), glucose, fibrinogen, and insulin‐dependent diabetes mellitus, homeostasis model assessment—insulin resistance, and presence of NASH. Multivariate analysis indicated that PNPLA3 rs738409 G versus C allele remained an (independent) risk factor for NASH, in addition to CK‐18 >145 IU/l, glucose >100 mg/dl, and C‐reactive protein (CRP) >0.8 mg/dl. The probability of NASH increased from 9% (no risk factor) to 82% if all four risk factors were present. Conclusions : In this cohort of patients with medically complicated obesity, PNPLA3 rs738409 G allelic expression is associated with hepatic (NASH) and nonhepatic complications of obesity, such as insulin resistance. These novel findings may be related to a greater impact of PNPLA3 variant in magnitude and scope in patients with severe obesity than in less obese populations. Further studies are needed to characterize the nature of these associations.  相似文献   
179.
180.
Glutaric aciduria type I (glutaryl-CoA dehydrogenase deficiency) is an inborn error of metabolism that usually manifests in infancy by an acute encephalopathic crisis and often results in permanent motor handicap. Biochemical hallmarks of this disease are elevated levels of glutarate and 3-hydroxyglutarate in blood and urine. The neuropathology of this disease is still poorly understood, as low lysine diet and carnitine supplementation do not always prevent brain damage, even in early-treated patients. We used a 3D in vitro model of rat organotypic brain cell cultures in aggregates to mimic glutaric aciduria type I by repeated administration of 1 mM glutarate or 3-hydroxyglutarate at two time points representing different developmental stages. Both metabolites were deleterious for the developing brain cells, with 3-hydroxyglutarate being the most toxic metabolite in our model. Astrocytes were the cells most strongly affected by metabolite exposure. In culture medium, we observed an up to 11-fold increase of ammonium in the culture medium with a concomitant decrease of glutamine. We further observed an increase in lactate and a concomitant decrease in glucose. Exposure to 3-hydroxyglutarate led to a significantly increased cell death rate. Thus, we propose a three step model for brain damage in glutaric aciduria type I: (i) 3-OHGA causes the death of astrocytes, (ii) deficiency of the astrocytic enzyme glutamine synthetase leads to intracerebral ammonium accumulation, and (iii) high ammonium triggers secondary death of other brain cells. These unexpected findings need to be further investigated and verified in vivo. They suggest that intracerebral ammonium accumulation might be an important target for the development of more effective treatment strategies to prevent brain damage in patients with glutaric aciduria type I.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号