首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1534篇
  免费   138篇
  2023年   13篇
  2022年   40篇
  2021年   75篇
  2020年   34篇
  2019年   40篇
  2018年   33篇
  2017年   42篇
  2016年   68篇
  2015年   89篇
  2014年   86篇
  2013年   98篇
  2012年   154篇
  2011年   134篇
  2010年   71篇
  2009年   63篇
  2008年   86篇
  2007年   70篇
  2006年   60篇
  2005年   59篇
  2004年   57篇
  2003年   47篇
  2002年   39篇
  2001年   10篇
  2000年   10篇
  1999年   9篇
  1998年   7篇
  1997年   8篇
  1996年   6篇
  1994年   5篇
  1993年   9篇
  1992年   5篇
  1991年   10篇
  1990年   7篇
  1989年   12篇
  1988年   8篇
  1987年   8篇
  1986年   8篇
  1985年   7篇
  1984年   4篇
  1983年   7篇
  1982年   8篇
  1979年   5篇
  1978年   9篇
  1974年   5篇
  1971年   3篇
  1970年   3篇
  1969年   5篇
  1968年   5篇
  1967年   4篇
  1966年   4篇
排序方式: 共有1672条查询结果,搜索用时 62 毫秒
81.
Cellular α-tubulin can bear various carboxy-terminal sequences: full-length tubulin arising from gene neosynthesis is tyrosinated, and two truncated variants, corresponding to detyrosinated and Δ2 α‑tubulin, result from the sequential cleavage of one or two C-terminal residues, respectively. Here, by using a novel antibody named 3EG that is highly specific to the –EEEG C-terminal sequence, we demonstrate the occurrence in neuronal tissues of a new αΔ3‑tubulin variant corresponding to α1A/B‑tubulin deleted of its last three residues (EEY). αΔ3‑tubulin has a specific distribution pattern: its quantity in the brain is similar to that of αΔ2-tubulin around birth but is much lower in adult tissue. This truncated α1A/B-tubulin variant can be generated from αΔ2-tubulin by the deglutamylases CCP1, CCP4, CCP5, and CCP6 but not by CCP2 and CCP3. Moreover, using 3EG antibody, we identify a C‑terminally truncated β-tubulin form with the same –EEEG C-terminal sequence. Using mass spectrometry, we demonstrate that β2A/B-tubulin is modified by truncation of the four C-terminal residues (EDEA). We show that this newly identified βΔ4-tubulin is ubiquitously present in cells and tissues and that its level is constant throughout the cell cycle. These new C-terminally truncated α- and β-tubulin variants, both ending with –EEEG sequence, are expected to regulate microtubule physiology. Of interest, the αΔ3-tubulin seems to be related to dynamic microtubules, resembling tyrosinated-tubulin rather than the other truncated variants, and may have critical function(s) in neuronal development.  相似文献   
82.
83.
Petroleum pollution is a global problem that requires effective and accessible remediation strategies that takes ecosystem functioning into serious consideration. Bioremediation can be an effective tool to address the challenge. In this study, we used a mesocosm experiment to evaluate the effects of locally sourced and community produced biochar and compost amendments on diesel-contaminated soil. At the end of the 90-day experiment, we quantified the effects of the amendments on total petroleum hydrocarbons (C9-C40) (TPH) and soil pH, organic matter, aggregate stability, soil respiration, extractable phosphorus, extractable potassium, and micronutrients (Mg, Fe, Mn, and Zn). We observed significantly higher TPH degradation in compost-amended soils than in controls and soils amended with biochar. We propose that the addition of compost improved TPH biodegradation by augmenting soil nutrient content and microbial activity. Our results suggest that community-accessible compost can improve TPH biodegradation, and that implementation is possible at the community level.  相似文献   
84.
85.
A rapid and simple method for quantitation of metformin (MET) in human plasma by HPLC-MS/MS was developed and validated. The sample preparation consists of plasma deproteinization using acetonitrile. The mobile phase consisted of water-acetonitrile and formic acid (55/45/0.048, v/v/%) and the run time was 3 min. A pursuit C(18) (100 mm x 2.0 mm i.d., 3 microm) column connected to a guard column MS-pursuit (0.20 mm x 0.20 mm i.d., 5 microm) was used. The range of the calibration curve was from 20 to 5000 ng/mL, the limit of quantitation being 20 ng/mL. The detection was performed on a mass spectrometer (ESI+), using metoprolol as internal standard. The calibration curves have r(2) values of 0.995 (CV=0.24%, n=10). The accuracy and precision were between 90.74 and 106.7% and coefficients of variations (CV) of 1.10 and 4.35%, respectively. The method was applied to determine the pharmacokinetic parameters: C(max) (1667.25 ng/mL) and T(max) (3.89 h).  相似文献   
86.
87.
88.
Endothelial dysfunction is a hallmark of inflammation and is mediated by inflammatory factors that signal through G protein–coupled receptors including protease-activated receptor-1 (PAR1). PAR1, a receptor for thrombin, signals via the small GTPase RhoA and myosin light chain intermediates to facilitate endothelial barrier permeability. PAR1 also induces endothelial barrier disruption through a p38 mitogen-activated protein kinase–dependent pathway, which does not integrate into the RhoA/MLC pathway; however, the PAR1-p38 signaling pathways that promote endothelial dysfunction remain poorly defined. To identify effectors of this pathway, we performed a global phosphoproteome analysis of thrombin signaling regulated by p38 in human cultured endothelial cells using multiplexed quantitative mass spectrometry. We identified 5491 unique phosphopeptides and 2317 phosphoproteins, four distinct dynamic phosphoproteome profiles of thrombin-p38 signaling, and an enrichment of biological functions associated with endothelial dysfunction, including modulators of endothelial barrier disruption and a subset of kinases predicted to regulate p38-dependent thrombin signaling. Using available antibodies to detect identified phosphosites of key p38-regulated proteins, we discovered that inhibition of p38 activity and siRNA-targeted depletion of the p38α isoform increased basal phosphorylation of extracellular signal–regulated protein kinase 1/2, resulting in amplified thrombin-stimulated extracellular signal–regulated protein kinase 1/2 phosphorylation that was dependent on PAR1. We also discovered a role for p38 in the phosphorylation of α-catenin, a component of adherens junctions, suggesting that this phosphorylation may function as an important regulatory process. Taken together, these studies define a rich array of thrombin- and p38-regulated candidate proteins that may serve important roles in endothelial dysfunction.  相似文献   
89.
90.
Phenotypic plasticity is an important driver of species resilience. Often mediated by epigenetic changes, phenotypic plasticity enables individual genotypes to express variable phenotypes in response to environmental change. Barramundi (Lates calcarifer) are a protandrous (male‐first) sequential hermaphrodite that exhibits plasticity in length‐at‐sex change between geographic regions. This plasticity is likely to be mediated by changes in DNA methylation (DNAm), a well‐studied epigenetic modification. To investigate the relationships between length, sex, and DNAm in a sequential hermaphrodite, here, we compare DNAm in four conserved vertebrate sex‐determining genes in male and female barramundi of differing lengths from three geographic regions of northern Australia. Barramundi first mature as male and later sex change to female upon the attainment of a larger body size; however, a general pattern of increasing female‐specific DNAm markers with increasing length was not observed. Significant differences in DNAm between males and females of similar lengths suggest that female‐specific DNAm arises rapidly during sex change, rather than gradually with fish growth. The findings also reveal that region‐specific differences in length‐at‐sex change are accompanied by differences in DNAm and are consistent with variability in remotely sensed sea temperature and salinity. Together, these findings provide the first in situ evidence for epigenetically and environmentally mediated sex change in a protandrous hermaphrodite and offer significant insight into the molecular and ecological processes governing the marked and unique plasticity of sex in fish.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号