首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1180篇
  免费   103篇
  1283篇
  2024年   3篇
  2023年   9篇
  2022年   37篇
  2021年   69篇
  2020年   29篇
  2019年   34篇
  2018年   34篇
  2017年   32篇
  2016年   55篇
  2015年   77篇
  2014年   74篇
  2013年   80篇
  2012年   124篇
  2011年   110篇
  2010年   57篇
  2009年   55篇
  2008年   72篇
  2007年   65篇
  2006年   55篇
  2005年   50篇
  2004年   44篇
  2003年   37篇
  2002年   28篇
  2001年   3篇
  2000年   6篇
  1999年   4篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   5篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   3篇
排序方式: 共有1283条查询结果,搜索用时 15 毫秒
31.
The expression of soluble recombinant transglutaminase (TGase) has proven to be a challenge for many research groups. Herein, we report a complementary method for the expression, in BL21(DE3) Escherichia coli, of recombinant human tissue transglutaminase (hTG2) whose solubility is enhanced through N-terminal fusion to glutathione S-transferase (GST). Moreover, we report the cleavage of the GST tag using PreScission? Protease (PSP) and purification of hTG2 in its untagged form, distinctively suitable for subsequent studies of its remarkable conformational equilibrium. The effects of co-solvents and storage conditions on stability of purified hTG2 are also reported. Furthermore, we demonstrate for the first time the use of a convenient chromogenic assay to measure the activity of the human enzyme. The utility of this assay was demonstrated in the measurement of the kinetic parameters of a wide variety of substrates and inhibitors of both hTG2 and the extensively studied guinea pig liver TGase. Finally, comparison of these results provides further evidence for the functional similarity of the two enzymes.  相似文献   
32.
The protective host immune response to viral infections requires both effective innate and adaptive immune responses. Cross-talk between the two responses is coordinated by the chemokine network and professional APCs such as dendritic cells (DCs). In mice, subpopulations of myeloid DCs in peripheral tissues such as lungs and in blood express CX3CR1 depending on the inflammation state. We thus examined the host response of mice deficient in the chemokine receptor CX3CR1 to an intranasal vaccinia virus infection. CX3CR1-deficient mice displayed significantly more severe morbidity and mortality compared with control wild-type mice within 10 d following vaccinia virus infection. CX3CR1(-/-) mice had increased viral loads and a reduced T cell response compared with wild-type mice. Finally, an adoptive transfer of CX3CR1(+/+) DCs completely protected CX3CR1(-/-) mice to a previously lethal infection. This study therefore opens up the possibility of novel antiviral therapeutics targeting lung DC recruitment.  相似文献   
33.

Background

PI3Kδ is a lipid kinase of the phosphoinositide 3-kinase class 1A family and involved in early signaling events of leukocytes regulating proliferation, differentiation and survival. Currently, several inhibitors of PI3Kδ are under investigation for the treatment of hematopoietic malignancies. In contrast to the beneficial effect of inhibiting PI3Kδ in tumor cells, several studies reported the requirement of PI3Kδ for the function of immune cells, such as natural killer and T helper cells. Cytotoxic T lymphocytes (CTLs) are essential for tumor surveillance. The scope of this study is to clarify the potential impact of PI3Kδ inhibition on the function of CTLs with emphasis on tumor surveillance.

Principal Findings

PI3Kδ-deficient mice develop significantly bigger tumors when challenged with MC38 colon adenocarcinoma cells. This defect is accounted for by the fact that PI3Kδ controls the secretory perforin-granzyme pathway as well as the death-receptor pathway of CTL-mediated cytotoxicity, leading to severely diminished cytotoxicity against target cells in vitro and in vivo in the absence of PI3Kδ expression. PI3Kδ-deficient CTLs express low mRNA levels of important components of the cytotoxic machinery, e.g. prf1, grzmA, grzmB, fasl and trail. Accordingly, PI3Kδ-deficient tumor-infiltrating CTLs display a phenotype reminiscent of naïve T cells (CD69lowCD62Lhigh). In addition, electrophysiological capacitance measurements confirmed a fundamental degranulation defect of PI3Kδ−/− CTLs.

Conclusion

Our results demonstrate that CTL-mediated tumor surveillance is severely impaired in the absence of PI3Kδ and predict that impaired immunosurveillance may limit the effectiveness of PI3Kδ inhibitors in long-term treatment.  相似文献   
34.
Recruitment of effector T cells to sites of infection or inflammation is essential for an effective adaptive immune response. The chemokine CCL5 (RANTES) activates its cognate receptor, CCR5, to initiate cellular functions, including chemotaxis. In earlier studies, we reported that CCL5-induced CCR5 signaling activates the mTOR/4E-BP1 pathway to directly modulate mRNA translation. Specifically, CCL5-mediated mTOR activation contributes to T cell chemotaxis by initiating the synthesis of chemotaxis-related proteins. Up-regulation of chemotaxis-related proteins may prime T cells for efficient migration. It is now clear that mTOR is also a central regulator of nutrient sensing and glycolysis. Herein we describe a role for CCL5-mediated glucose uptake and ATP accumulation to meet the energy demands of chemotaxis in activated T cells. We provide evidence that CCL5 is able to induce glucose uptake in an mTOR-dependent manner. CCL5 treatment of ex vivo activated human CD3(+) T cells also induced the activation of the nutrient-sensing kinase AMPK and downstream substrates ACC-1, PFKFB-2, and GSK-3β. Using 2-deoxy-d-glucose, an inhibitor of glucose uptake, and compound C, an inhibitor of AMPK, experimental data are presented that demonstrate that CCL5-mediated T cell chemotaxis is dependent on glucose, as these inhibitors inhibit CCL5-mediated chemotaxis in a dose-dependent manner. Altogether, these findings suggest that both glycolysis and AMPK signaling are required for efficient T cell migration in response to CCL5. These studies extend the role of CCL5 mediated CCR5 signaling beyond lymphocyte chemotaxis and demonstrate a role for chemokines in promoting glucose uptake and ATP production to match energy demands of migration.  相似文献   
35.
Nickel superoxide dismutase (NiSOD) is unique among the family of superoxide dismutase enzymes in that it coordinates Cys residues (Cys2 and Cys6) to the redox-active metal center and exhibits a hexameric quaternary structure. To assess the role of the Cys residues with respect to the activity of NiSOD, mutations of Cys2 and Cys6 to Ser (C2S-NiSOD, C6S-NiSOD, and C2S/C6S-NiSOD) were carried out. The resulting mutants do not catalyze the disproportionation of superoxide, but retain the hexameric structure found for wild-type NiSOD and bind Ni(II) ions in a 1:1 stoichiometry. X-ray absorption spectroscopic studies of the Cys mutants revealed that the nickel active-site structure for each mutant resembles that of C2S/C6S-NiSOD and demonstrate that mutation of either Cys2 or Cys6 inhibits coordination of the remaining Cys residue. Mutation of one or both Cys residue(s) in NiSOD induces the conversion of the low-spin Ni(II) site in the native enzyme to a high-spin Ni(II) center in the mutants. This result indicates that coordination of both Cys residues is required to generate the native low-spin configurations and maintain catalytic activity. Analysis of the quaternary structure of the Cys mutants by differential scanning calorimetry, mass spectrometry, and size-exclusion chromatography revealed that the Cys ligands, particularly Cys2, are also important for stabilizing the hexameric quaternary structure of the native enzyme.  相似文献   
36.
37.
The tenth annual Keystone Symposium on the Mechanism and Biology of Silencing convened in Monterey, California, in March 2011. Those seeking some West Coast sunshine were, unfortunately, met with incessant precipitation throughout the meeting. Nevertheless, attendees were brightened by enlightening and vigorous scientific discussions. Here, we summarize the results presented at the meeting, which inspire and push this expanding field into new territories.  相似文献   
38.
In plants, the mevalonic acid (MVA) pathway provides precursors for the formation of triterpenes, sesquiterpenes, phytosterols and primary metabolites important for cell integrity. Here, we have cloned the cDNA encoding enzymes catalysing the final three steps of the MVA pathway from Madagascar periwinkle (Catharanthus roseus), mevalonate kinase (MVK), 5-phosphomevalonate kinase (PMK) and mevalonate 5-diphosphate decarboxylase (MVD). These cDNA were shown to functionally complement MVA pathway deletion mutants in the yeast Saccharomyces cerevisiae. Transient transformations of C. roseus cells with yellow fluorescent protein (YFP)-fused constructs reveal that PMK and MVD are localised to the peroxisomes, while MVK was cytosolic. These compartmentalisation results were confirmed using the Arabidopsis thaliana MVK, PMK and MVD sequences fused to YFP. Based on these observations and the arguments raised here we conclude that the final steps of the plant MVA pathway are localised to the peroxisome.  相似文献   
39.
Endothelial cells (ECs) form a monolayer that serves as a barrier between the blood and the underlying tissue. ECs tightly regulate their cell-cell junctions, controlling the passage of soluble materials and immune cells across the monolayer barrier. We studied the role of N-WASP, a key regulator of Arp2/3 complex and actin assembly, in EC monolayers. We report that N-WASP regulates endothelial monolayer integrity by affecting the organization of cell junctions. Depletion of N-WASP resulted in an increase in transendothelial electrical resistance, a measure of monolayer integrity. N-WASP depletion increased the width of cell-cell junctions and altered the organization of F-actin and VE-cadherin at junctions. N-WASP was not present at cell-cell junctions in monolayers under resting conditions, but it was recruited following treatment with sphingosine-1-phosphate. Taken together, our results reveal a novel role for N-WASP in remodeling EC junctions, which is critical for monolayer integrity and function.  相似文献   
40.
Abstract

Over 12 months prior to the recent United Nations decision to defer a decision about what type of international treaty should be developed in the global stem-cell research and human cloning debate, the Federal Parliament of Australia passed two separate pieces of legislation relating to both these concerns. After a five-year long process of community consultation, media spectacle and parliamentary debate, reproductive cloning has been banned in Australia and only embryos considered to be excess to assisted reproductive technologies in existence on the 5th of April 2002 are currently valid research material. This paper argues that underpinning both pieces of legislation is a profound belief in the disruptive potential of all types of human cloning for the very nature and integrity of human species being. A belief, moreover, that is based on a presumption that it is apparently possible to conceptualise what being human even means for all Australians.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号