首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1130篇
  免费   99篇
  2024年   2篇
  2023年   8篇
  2022年   22篇
  2021年   68篇
  2020年   28篇
  2019年   34篇
  2018年   31篇
  2017年   31篇
  2016年   52篇
  2015年   76篇
  2014年   72篇
  2013年   78篇
  2012年   122篇
  2011年   106篇
  2010年   56篇
  2009年   53篇
  2008年   68篇
  2007年   62篇
  2006年   51篇
  2005年   49篇
  2004年   42篇
  2003年   37篇
  2002年   28篇
  2001年   3篇
  2000年   6篇
  1999年   4篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   5篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   3篇
  1968年   1篇
排序方式: 共有1229条查询结果,搜索用时 31 毫秒
51.
Biological Invasions - The Spotted Lantern Fly (SLF), Lycorma delicatula (Hemiptera: Fulgoridae), is a sap feeding pest native to southeast Asia that has become a global biosecurity threat...  相似文献   
52.
53.
54.
Endothelial dysfunction is a hallmark of inflammation and is mediated by inflammatory factors that signal through G protein–coupled receptors including protease-activated receptor-1 (PAR1). PAR1, a receptor for thrombin, signals via the small GTPase RhoA and myosin light chain intermediates to facilitate endothelial barrier permeability. PAR1 also induces endothelial barrier disruption through a p38 mitogen-activated protein kinase–dependent pathway, which does not integrate into the RhoA/MLC pathway; however, the PAR1-p38 signaling pathways that promote endothelial dysfunction remain poorly defined. To identify effectors of this pathway, we performed a global phosphoproteome analysis of thrombin signaling regulated by p38 in human cultured endothelial cells using multiplexed quantitative mass spectrometry. We identified 5491 unique phosphopeptides and 2317 phosphoproteins, four distinct dynamic phosphoproteome profiles of thrombin-p38 signaling, and an enrichment of biological functions associated with endothelial dysfunction, including modulators of endothelial barrier disruption and a subset of kinases predicted to regulate p38-dependent thrombin signaling. Using available antibodies to detect identified phosphosites of key p38-regulated proteins, we discovered that inhibition of p38 activity and siRNA-targeted depletion of the p38α isoform increased basal phosphorylation of extracellular signal–regulated protein kinase 1/2, resulting in amplified thrombin-stimulated extracellular signal–regulated protein kinase 1/2 phosphorylation that was dependent on PAR1. We also discovered a role for p38 in the phosphorylation of α-catenin, a component of adherens junctions, suggesting that this phosphorylation may function as an important regulatory process. Taken together, these studies define a rich array of thrombin- and p38-regulated candidate proteins that may serve important roles in endothelial dysfunction.  相似文献   
55.
56.
Phenotypic plasticity is an important driver of species resilience. Often mediated by epigenetic changes, phenotypic plasticity enables individual genotypes to express variable phenotypes in response to environmental change. Barramundi (Lates calcarifer) are a protandrous (male‐first) sequential hermaphrodite that exhibits plasticity in length‐at‐sex change between geographic regions. This plasticity is likely to be mediated by changes in DNA methylation (DNAm), a well‐studied epigenetic modification. To investigate the relationships between length, sex, and DNAm in a sequential hermaphrodite, here, we compare DNAm in four conserved vertebrate sex‐determining genes in male and female barramundi of differing lengths from three geographic regions of northern Australia. Barramundi first mature as male and later sex change to female upon the attainment of a larger body size; however, a general pattern of increasing female‐specific DNAm markers with increasing length was not observed. Significant differences in DNAm between males and females of similar lengths suggest that female‐specific DNAm arises rapidly during sex change, rather than gradually with fish growth. The findings also reveal that region‐specific differences in length‐at‐sex change are accompanied by differences in DNAm and are consistent with variability in remotely sensed sea temperature and salinity. Together, these findings provide the first in situ evidence for epigenetically and environmentally mediated sex change in a protandrous hermaphrodite and offer significant insight into the molecular and ecological processes governing the marked and unique plasticity of sex in fish.  相似文献   
57.
PAM14 has been found to associate in complexes with the MORF4/MRG family of proteins as well as Rb, the tumor suppressor protein. This suggested that it might be involved in cell growth, immortalization, and/or senescence. To elucidate the in vivo function of PAM14, we characterized the expression pattern of mouse Pam14 and generated PAM14-deficient (Pam14(-/-)) mice. Pam14 was widely expressed in all mouse tissues and as early as 7 days during embryonic development. Despite this ubiquitous expression in wild-type mice, Pam14(-/-) mice were healthy and fertile. Response to mitogenic stimulation and production of interleukin-2 were the same in stimulated splenic T cells from Pam14(-/-) mice as in control littermates. Cell growth rates of mouse embryonic fibroblasts (MEFs) from all three genotypes were the same, and immortalized cells were obtained from all cell cultures during continuous culture. There was also no difference in expression of growth-related genes in response to serum stimulation in the null versus control MEFs. These data demonstrate that PAM14 is not essential for normal mouse development and cell cycle control. PAM14 likely acts as an adaptor protein in nucleoprotein complexes and is probably compensated for by another functionally redundant protein(s).  相似文献   
58.
59.
Salmonella resides within host cells in a vacuole that it modifies through the action of virulence proteins called effectors. Here we examined the role of two related effectors, SopD and SopD2, in Salmonella pathogenesis. Salmonella enterica serovar Typhimurium (S. Typhimurium) mutants lacking either sopD or sopD2 were attenuated for replication in the spleens of infected mice when competed against wild-type bacteria in mixed infection experiments. A double mutant lacking both effector genes did not display an additive attenuation of virulence in these experiments. The double mutant also competed equally with both of the single mutants. Deletion of either effector impaired bacterial replication in mouse macrophages but not human epithelial cells. Deletion of sopD2 impaired Salmonella's ability to form tubular membrane filaments [Salmonella-induced filaments (Sifs)] in infected cells; the number of Sifs decreased, whereas the number of pseudo-Sifs (thought to be a precursor of Sifs) was increased. Transfection of HeLa cells with the effector SifA induced the formation of Sif-like tubules and these were observed in greater size and number after co-transfection of SifA with SopD2. In infected cells, SifA and SopD2 were localized both to Sifs and to pseudo-Sifs. In contrast, deletion of sopD had no effect on Sif formation. Our results indicate that both SopD and SopD2 contribute to virulence in mice and suggest a functional relationship between these two proteins during systemic infection of the host.  相似文献   
60.
Abnormalities in lymphocyte signaling cascades are thought to play an important role in the development of autoimmune disease. However, the large amount of cellular material needed for standard biochemical assessment of signaling status has made it difficult to evaluate putative abnormalities completely using primary lymphocytes. The development of technology to employ intracellular staining and flow cytometry to assess the signaling status of individual cells has now made it possible to delineate the perturbations that are present in lymphocytes from patients with autoimmune disease. As an example, human B cells from the Ramos B cell line and the periphery of systemic lupus erythematosus (SLE) patients or normal nonautoimmune controls were assessed for activation of the NF-kappaB and mitogen activated protein kinase (MAPK) signaling cascades by intracellular multiparameter flow cytometric analysis and biochemical Western blotting. In combination with fluorochrome conjugated antibodies specific for surface proteins that define B cell subsets, antibodies that recognize activated, or phosphorylated inhibitors of kappaB (IkappaB) as well as the extracellular regulated kinase (ERK), jun N-terminal kinase (JNK) or p38 MAPKs were used to stain fixed and permeabilized human B cells and analyze them flow cytometrically. Examination of the known signaling pathways following engagement of CD40 on human B cells confirmed that intracellular flow cytometry and Western blotting equivalently assay CD154-induced phosphorylation and degradation of IkappaB proteins as well as phosphorylation of the MAPKs ERK, JNK and p38. In addition, B cells from the periphery of SLE patients had a more activated status immediately ex vivo as assessed by intracellular flow cytometric analysis of phosphorylated ERK, JNK and p38 when compared with B cells from the periphery of normal, nonautoimmune individuals. Together, these results indicate that multiparameter intracellular flow cytometric analysis of signaling pathways, such as the NF-kappaB and MAPK cascades, can be used routinely to assess the activation status of a small number of cells and thus delineate abnormalities in signaling molecules expressed in primary lymphocytes from patients with autoimmune disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号