首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   475篇
  免费   49篇
  524篇
  2023年   2篇
  2022年   4篇
  2021年   5篇
  2020年   4篇
  2019年   11篇
  2018年   8篇
  2017年   11篇
  2016年   15篇
  2015年   21篇
  2014年   15篇
  2013年   27篇
  2012年   24篇
  2011年   18篇
  2010年   22篇
  2009年   13篇
  2008年   39篇
  2007年   28篇
  2006年   25篇
  2005年   35篇
  2004年   22篇
  2003年   17篇
  2002年   12篇
  2001年   11篇
  2000年   13篇
  1999年   19篇
  1998年   6篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1993年   7篇
  1992年   9篇
  1991年   7篇
  1990年   3篇
  1989年   4篇
  1988年   4篇
  1987年   8篇
  1986年   2篇
  1985年   2篇
  1984年   7篇
  1983年   6篇
  1982年   3篇
  1978年   4篇
  1976年   2篇
  1975年   5篇
  1974年   2篇
  1973年   4篇
  1971年   2篇
  1968年   2篇
  1967年   1篇
  1966年   2篇
排序方式: 共有524条查询结果,搜索用时 15 毫秒
121.
Increased levels of dCTP increase the frequency of initiation of discontinuous DNA intermediates in a cellophane disc in vitro system. Increased levels of other ribo- and deoxyribonucleoside triphosphates show no effect.  相似文献   
122.
Conotoxins   总被引:6,自引:0,他引:6  
  相似文献   
123.
The 13 amino acid toxic peptide from the marine snail Conus geographus, conotoxin GI, blocks the acetylcholine receptor at the neuromuscular junction. In this report, we describe a method for analyzing disulfide bonding in nanomole amounts of small cystine-rich peptides. The procedure involves partial reduction and a double-label alkylation of cysteine residues. Using this method, we show that the natural conotoxin GI has a (2-7, 3-13) disulfide configuration. The structure of conotoxin GI has been confirmed by chemical synthesis. The preparation and purification of molecularly homogeneous, iodinated derivatives of this toxin are also described. All derivatives, including the [diiodohistidine,diiodotyrosine]conotoxin GI, retained at least half of the biological activity of unmodified toxin. Since the tetraiodinated toxin, which is greater than 25% by weight iodine, retains considerable toxicity, unmodified histidine and tyrosine residues in conotoxin GI are not crucial for biological activity.  相似文献   
124.
An indispensable gene for NAD biosynthesis in Salmonella typhimurium.   总被引:3,自引:5,他引:3  
We have located the nadD locus between lip and leuS at 14 min on the Salmonella typhimurium chromosome, and we have shown it to be the structural gene for nicotinic acid mononucleotide adenylyltransferase. This is the first indispensable gene of pyridine nucleotide metabolism that has been identified. Mutants altered at this locus, isolated by their 6-aminonicotinamide resistance phenotype, accumulate abnormally large pools of nicotinic acid mononucleotide in vivo; many exhibit a temperature-sensitive lethal phenotype. Enzyme assays reveal markedly lower transferase activity in mutant extracts than in nadD+ extracts. The partial dominance of nadD mutants when placed in a nadD+/nadD diploid suggests that nicotinic acid mononucleotide adenylyltransferase is a multimeric enzyme.  相似文献   
125.
126.
Functional analyses of the different proteins involved in the synthesis and accumulation of polyhydroxyalkanoates (PHAs) in P. putida U were performed using a mutant in which the pha locus had been deleted (PpUDeltapha). These studies showed that: (i) Pha enzymes cannot be replaced by other proteins in this bacterium, (ii) the transformation of PpDeltapha with a plasmid containing the locus pha fully restores the synthesis of bioplastics, (iii) the transformation of PpDeltapha with a plasmid harbouring the gene encoding the polymerase PhaC1 (pMCphaC1) permits the synthesis of polyesters (even in absence of phaC2ZDFI); however, in this strain (PpUDeltapha-pMCphaC1) the number of PHAs granules was higher than in the wild type, (iv) the expression of phaF in PpUDeltapha-pMCphaC1 restores the original phenotype, showing that PhaF is involved in the coalescence of the PHAs granules. Furthermore, the deletion of the phaDFI genes in P. putida U considerably decreases (> 70%) the biosynthesis of PHAs consisting of hydroxyalkanoates with aliphatic constituents, and completely prevents the synthesis of those ones containing aromatic monomers. Additional experiments revealed that the deletion of phaD in P. putida U strongly reduces the synthesis of PHA, this effect being restored by PhaF. Moreover, the overexpression of phaF in P. putida U, or in its DeltafadBA mutant, led to the collection of PHA over-producer strains.  相似文献   
127.
Myotubularin-related protein 6 (MTMR6) is a catalytically active member of the myotubularin (MTM) family, which is composed of 14 proteins. Catalytically active myotubularins possess 3-phosphatase activity dephosphorylating phosphatidylinositol-3-phoshate and phosphatidylinositol-3,5-bisphosphate, and some members have been shown to form homomers or heteromeric complexes with catalytically inactive myotubularins. We demonstrate that human MTMR6 forms a heteromer with an enzymatically inactive member myotubularin-related protein 9 (MTMR9), both in vitro and in cells. MTMR9 increased the binding of MTMR6 to phospholipids without changing the lipid binding profile. MTMR9 increased the 3-phosphatase activity of MTMR6 up to 6-fold. We determined that MTMR6 is activated up to 28-fold in the presence of phosphatidylserine liposomes. Together, MTMR6 activity in the presence of MTMR9 and assayed in phosphatidylserine liposomes increased 84-fold. Moreover, the formation of this heteromer in cells resulted in increased protein levels of both MTMR6 and MTMR9, probably due to the inhibition of degradation of both proteins. Furthermore, co-expression of MTMR6 and MTMR9 decreased etoposide-induced apoptosis, whereas decreasing both MTMR6 and MTMR9 by RNA interference led to increased cell death in response to etoposide treatment when compared with that seen with RNA interference of MTMR6 alone. Thus, MTMR9 greatly enhances the functions of MTMR6.Myotubularin proteins are a family of 14 proteins with the canonical dual specificity protein tyrosine phosphatase active site CX5R motif (13). Eight members of the myotubularin family possess catalytic activity, dephosphorylating phosphatidylinositol 3-phosphate (PtdIns-3-P)4 and phosphatidylinositol 3,5-bisphosphate (PtdIns-3,5-P2) at the D-3 position, and six members are not catalytically active because they lack the conserved cysteine residue in the protein tyrosine phosphatase motif that is required for activity. Interest in this group of proteins originated from the genetic evidence linking myotubularin, the founding member of this family, to myotubular myopathy, an X-linked disorder characterized by severe hypotonia and generalized muscle weakness (4). Subsequently, mutations in MTMR2 and in its inactive binding partner MTMR13 were linked to a subset of Charcot-Marie-Tooth disease type 4B, a demyelinating neurodegenerative disorder (5, 6).Despite near identical substrate specificity, biochemical and genetic evidence supports the hypothesis that myotubularin proteins are not redundant and have unique functions within cells (2, 79). The mechanisms by which loss of function of myotubularin proteins produce diseases are not known. Current evidence supports the hypothesis that each myotubularin protein regulates a specific pool of PtdIns-3-P and/or PtdIns-3,5-P2, which in turn regulates a variety of cellular functions. Differences in tissue expression and subcellular localization play a role in the specificity of different myotubularins (1015).The functions of myotubularin proteins are altered by the formation of heteromers between catalytically active and inactive members of the family. The initial biochemical purification of MTM1 demonstrated the presence of MTM1 homodimers and MTM1-3-phosphatase adapter protein (3PAP) heteromers (16), which was later described as MTMR12 (15, 17). MTMR2 was found to form heteromers with MTMR5 (13) and MTMR13 (18), and MTMR7 formed heteromers with MTMR9 (19). In each case, a catalytically active myotubularin protein interacted with an inactive protein. Heteromerization generated two important effects: increased catalytic activity of the active component (13, 15, 19, 20) and targeting of the heteromer to specific subcellular locations (15). Mutations in the inactive member MTMR13 result in a similar phenotype in patients as the mutations in its catalytically active binding partner MTMR2, indicating an indispensable role for the catalytically inactive subunit (21).Myotubularin proteins can be grouped into subfamilies based on homology. Closely related MTMR6, MTMR7, and MTMR8 comprise such a subfamily. We have previously characterized the interaction between mouse MTMR7 and MTMR9 proteins (19). In this report, we characterize the interaction between human MTMR6 and MTMR9. MTMR6 and MTMR9 have been shown to form a heteromeric complex in mouse and Caenorhabditis elegans (19, 22). MTMR6 has been shown to inhibit the activity of a calcium-activated potassium channel (type KCa3.1) (23, 24). Two screening experiments implicate MTMR6 as a regulator of apoptosis. By RNA microarray analysis, increased MTMR6 expression was observed in B cell chronic lymphoid leukemia cells with increased resistance to irradiation-induced apoptosis (25), whereas in an RNA interference screen in HeLa cells, decreased MTMR6 expression promoted apoptosis (26).Here we show that MTMR6 interacts with MTMR9 in vitro and in human cells. This interaction increases the phospholipid binding and enzymatic activity of MTMR6 in vitro. Co-expression of either subunit in cells dramatically increased the protein levels of the individual binding partners, suggesting that heteromer formation increases the stability of the proteins. Finally, MTMR9 was found to potentiate the effects of MTMR6 on apoptosis.  相似文献   
128.
Alcohol intake is associated with numerous degenerative disorders, and the detrimental effects of alcohol may be due to its influence on plasma membrane and cellular transport systems. The aim of the present study was to compare in vitro and in vivo effects of ethanol on rabbit erythrocyte ATPase activities and correlate them with ethanol-induced oxidative stress. Age-matched male rabbits were given 5% ethanol in 2% sucrose solution, for 6 weeks ad libitum; control animals were given tap water. Daily intake of ethanol was 5 g/kg body weight; this experimental regimen resulted in an average serum ethanol concentration of 16.77 ± 2.00 mM/l. After this period, blood was collected, serum ethanol concentration was determined and erythrocyte membranes were prepared according to the method of Post et al. Activities of Na+/K+- and Mg2+-ATPases were determined. Thiobarbituric acid-reactive substance (TBARS) assay was used to detect levels of lipid peroxidation, a major indicator of oxidative stress. In vitro ethanol inhibits both Na+/K+-ATPase and Mg2+-ATPase, but Na+/K+-ATPase is more sensitive to the ethanol-induced inhibition. Increasing concentration of ethanol increased TBARS production, but significant difference was attained only at 5 and 12.5 mM of ethanol. Chronic ethanol consumption induced significant increase in Na+/K+- and Mg2+-ATPase activity, and TBARS production. Our results suggest that increased ATPase activity induced by chronic ethanol consumption is due to oxidative, induced modification of membrane phospholipids and proteins, which are responsible for inhibition of ATPase activity. Increased production of TBARS induced by in vitro exposure to ethanol is not the only factor that influences ATPases activity. Further research is needed to elucidate this relationship.  相似文献   
129.
Induction of Specific MicroRNAs Inhibits Cutaneous Wound Healing   总被引:1,自引:0,他引:1  
Chronic nonhealing wounds, such as venous ulcers (VUs), are a widespread and serious medical problem with high morbidity and mortality. The molecular pathology of VUs remains poorly understood, impeding the development of effective treatment strategies. Using mRNA expression profiling of VUs biopsies and computational analysis, we identified a candidate set of microRNAs with lowered target gene expression. Among these candidates, miR-16, -20a, -21, -106a -130a, and -203 were confirmed to be aberrantly overexpressed in a cohort study of 10 VU patients by quantitative PCR and in situ hybridizations. These microRNAs were predicted to target multiple genes important for wound healing, including early growth response factor 3, vinculin, and leptin receptor (LepR). Overexpression of the top up-regulated miRNAs, miR-21 and miR-130a, in primary human keratinocytes down-regulated expression of the endogenous LepR and early growth response factor 3. The luciferase reporter assay verified LepR as a direct target for miR-21 and miR-130a. Both miR-21 and miR-130a delayed epithelialization in an acute human skin wound model. Furthermore, in vivo overexpression of miR-21 inhibited epithelialization and granulation tissue formation in a rat wound model. Our results identify a novel mechanism in which overexpression of specific set of microRNAs inhibits wound healing, resulting in new potential molecular markers and targets for therapeutic intervention.  相似文献   
130.
Aims:  To isolate and identify linear alkylbenzene sulfonate (LAS)-degrading bacteria from Río de la Plata and adjacent waters, and to assay their degradation capability as a consortium and as single organisms.
Methods and Results:  A consortium consisting of four bacterial strains: Aeromonas caviae (two strains), Pseudomonas alcaliphila and Vibrio sp. was identified by 16S rRNA analysis. Isolates grown as a consortium produced higher biomass from LAS and CO2 release (mineralization) than individual cultures, and degraded 86% of LAS (20 mg l−1), whereas pure strains degraded between 21% and 60%. Bacterial desulfonation from LAS was evidenced in the consortium and A. caviae strains. A complete disappearance of LAS (10 mg l−1) was accomplished, and LAS levels of 50 and 100 mg l−1 led to a pronounced decrease in the biodegradation extent and inhibition of culture growth.
Conclusions:  A bacterial consortium capable of complete LAS degradation was isolated from the Río de la Plata and adjacent waters. This consortium was more efficient for LAS degradation than individual cultures, and was sensitive to high LAS concentrations.
Significance and Impact of the Study:  The autochthonous consortium with high effectiveness on LAS biodegradation is a useful tool for LAS depletion from these polluted ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号