首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   447篇
  免费   47篇
  2023年   2篇
  2021年   4篇
  2020年   4篇
  2019年   11篇
  2018年   5篇
  2017年   9篇
  2016年   15篇
  2015年   18篇
  2014年   14篇
  2013年   25篇
  2012年   22篇
  2011年   17篇
  2010年   22篇
  2009年   15篇
  2008年   35篇
  2007年   28篇
  2006年   24篇
  2005年   31篇
  2004年   20篇
  2003年   17篇
  2002年   13篇
  2001年   11篇
  2000年   14篇
  1999年   20篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1993年   7篇
  1992年   9篇
  1991年   6篇
  1990年   2篇
  1989年   4篇
  1988年   3篇
  1987年   8篇
  1986年   2篇
  1985年   2篇
  1984年   7篇
  1983年   6篇
  1982年   3篇
  1979年   1篇
  1978年   3篇
  1976年   2篇
  1975年   5篇
  1974年   2篇
  1973年   4篇
  1972年   1篇
  1971年   2篇
  1968年   2篇
  1967年   1篇
  1966年   2篇
排序方式: 共有494条查询结果,搜索用时 265 毫秒
131.
Hyperhomocysteinemia is associated with various pathologies including cardiovascular disease, stroke, and cognitive dysfunctions. Systemic administration of homocysteine can trigger seizures in animals, and patients with homocystinuria suffer from epileptic seizures. Available data suggest that homocysteine can be harmful to human cells because of its metabolic conversion to homocysteine thiolactone, a reactive thioester. A number of reports have demonstrated a reduction of Na+/K+-ATPase activity in cerebral ischemia, epilepsy and neurodegeneration possibly associated with excitotoxic mechanisms. The aim of this study was to examine the in vivo effects of d,l-homocysteine and d,l-homocysteine thiolactone on Na+/K+- and Mg2+-ATPase activities in erythrocyte (RBC), brain cortex, hippocampus, and brain stem of adult male rats. Our results demonstrate a moderate inhibition of rat hippocampal Na+/K+-ATPase activity by d,l-homocysteine, which however expressed no effect on the activity of this enzyme in the cortex and brain stem. In contrast,d,l-homocysteine thiolactone strongly inhibited Na+/K+-ATPase activity in cortex, hippocampus and brain stem of rats. RBC Na+/K+-ATPase and Mg2+-ATPase activities were not affected by d,l-homocysteine, while d,l-homocysteine thiolactone inhibited only Na+/K+-ATPase activity. This study results show that homocysteine thiolactone significantly inhibits Na+/K+-ATPase activity in the cortex, hippocampus, and brain stem, which may contribute at least in part to the understanding of excitotoxic and convulsive properties of this substance.  相似文献   
132.
A novel peptide, pal9a, was purified from the venom duct extract of the turrid snail, Polystira albida (superfamily Conoidea, family Turridae), collected in the Gulf of Mexico. Its primary structure was determined by automated Edman degradation and confirmed by mass spectrometry. Turritoxin pal9a contains 34 amino acid residues, including 6 Cys residues arranged in the pattern C-C-C-C-C-C (framework IX, where "-" represents one or more non-Cys amino acids), which characterizes the P-conotoxins. Peptide pal9a is the first P-conotoxin-like turritoxin characterized from a member of family Turridae of the Western Atlantic. The primary structure of turritoxin pal9a, NVCDGDACPDGVCRSGCTCDFNVAQRKDTCFYPQ-nh(2) (-nh(2), amidated C-terminus; calculated monoisotopic mass, 3679.48Da; experimental monoisotopic mass, 3678.84Da), shows variable degrees of low sequence similarity with framework IX-toxins from turrid (three species of Lophiotoma, and four species of Gemmula), terebrid (Hastula hectica), and Conus species of the Indo-Pacific (C. textile, C. gloriamaris, C. amadis, and C. litteratus) and of the Western Atlantic (C. regius). During the comparison of peptide pal9a with the other framework IX-toxins known to date, we realized that, in general, these peptides are hydrophilic, acidic compounds that have not been found in the fish-hunting Conus species studied thus far; we also found support for the notion that they may belong to several distinct gene superfamilies, even those from the same species. Given the broad distribution of framework IX-toxins within superfamily Conoidea, it will be interesting to identify the still-unknown molecular targets of P-conotoxins, P-conotoxin-like turritoxins, and P-conotoxin-like augertoxins.  相似文献   
133.
Actinomycetes can be symbionts in diverse organisms, including both plants and animals. Some actinomycetes benefit their host by producing small molecule secondary metabolites; the resulting symbioses are often developmentally complex. Actinomycetes associated with three cone snails were studied. Cone snails are venomous tropical marine gastropods which have been extensively examined because of their production of peptide-based neurological toxins, but no microbiological studies have been reported on these organisms. A microhabitat approach was used in which dissected tissue from each snail was treated as an individual sample in order to explore bacteria in the tissues separately. Our results revealed a diverse, novel, and highly culturable cone snail-associated actinomycete community, with some isolates showing promising bioactivity in a neurological assay. This suggests that cone snails may represent an underexplored reservoir of novel actinomycetes of potential interest for drug discovery.Interest in natural products and drug discovery has been a major driving force for the study of microbial communities associated with marine invertebrates. Sponges, which have provided more bioactive metabolites than any other marine invertebrate group (see reference 4 and previous references in that series) have been the main focus of these investigations, yielding numerous reports of associated bacteria and complex microbial communities (17, 43). Other examples of marine invertebrate-associated microbes explored for their involvement in natural products include bryozoans (9, 41), ascidians (37), and shipworms (46). Thus far, there are literature reports of diverse bacterial taxa involved in natural product biosynthesis in marine animals (9, 10). Notably less well studied are the symbiotic actinomycetes, for which the biology of host-actinomycete associations is just beginning to be explored in a methodical way. Actinomycetes are known to be important symbionts in a number of biological systems, such as plants, insects, and marine invertebrates, contributing as nitrogen fixers in plants (39) or utilizing their chemical arsenal for defense purposes (8, 22, 38).An initial investigation of a cone snail yielded a surprisingly high number of actinomycetes (data not shown), prompting this follow-up study on additional samples. Cone snail mollusks belong to the genus Conus, which contains about 500 closely related species (11). These mollusks are well known for their complex neurologically active venoms that they use to immobilize their prey, including fish, worms, and other mollusks. The venom of cone snails has been extensively studied, but to our knowledge no study of cone snail microbial communities has been reported. Cone snails are part of the larger superfamily Conoidea, comprising ∼20,000 species, making it an extremely diverse group (25, 34). Given the initial observation of cultivable actinomycetes from cone snails, this large group seemed like a potentially excellent source of new bacterial natural products and new models of actinomycete symbiosis.The goal of this study was to examine the actinobacteria community associated with tropical marine snails of the genus Conus, using a microhabitat approach by which individual organs are treated as independent samples, and to assess the bioactivities of the isolates obtained by using a neurological assay. Although similar approaches have previously been used in microbial ecology (3, 42), this is a novel approach in drug discovery for the identification of bioactive bacteria. We report here the association between three cone snails, Conus pulicarius, Conus rolani, and Conus tribblei, and their actinobacteria as well as the bioactivities of some of these actinobacteria.  相似文献   
134.
After enrichment of Odontesthes platensis intestinal contents, 53 lactic acid bacteria (LAB) were isolated. From the four isolates that showed inhibitory activity against Lactococcus garvieae 03/8460, strain TW34 was selected because it exerted the strongest inhibition. It also inhibited other Gram-positive bacteria, but not Gram-negative fish pathogens. Phenotypic and 16S rDNA phylogenetic analyses showed that TW34 belongs to Lactococcus lactis. In addition, TW34 showed to be sensitive to different antibiotics. The production of the inhibitory agent against L. garvieae was growth associated, and it was significantly influenced by the incubation temperature. The optimal temperature for the antimicrobial production was as low as 15°C. Both acidification and hydrogen peroxide production were ruled out as the source of inhibition. In contrast, the antimicrobial activity was completely lost by treatment with proteolytic enzymes, which confirmed that the inhibitory substance was a bacteriocin. The bacteriocin was highly thermostable (121°C for 15 min) and active between pH 3 and 11. It remained stable for up to 2 months when stored at 4°C and up to 6 months at −20°C. Our results suggest that the strain L. lactis TW34 could provide an alternative for lactococcosis control and therefore be considered for future challenge experiments with fish.  相似文献   
135.
Neonatal hypoxia/ischemia (HI) is the most common cause of developmental neurological, cognitive and behavioral deficits in children, with hyperoxia (HHI) treatment being a clinical therapy for newborn resuscitation. Although cerebral edema is a common outcome after HI, the mechanisms leading to excessive fluid accumulation in the brain are poorly understood. Given the rigid nature of the bone-encased brain matter, knowledge of edema formation in the brain as a consequence of any injury, as well as the importance of water clearance mechanisms and water and ion homeostasis is important to our understanding of its detrimental effects. Knowledge of the pathological process underlying the appearance of dysfunctional outcomes after development of cerebral edema after neonatal HI in the developing brain and the molecular events triggered will allow a rational assessment of HHI therapy for neonatal HI and determine whether this treatment is beneficial or harmful to the developing infant.  相似文献   
136.
Salp15 is a tick saliva protein that inhibits CD4+ T cell differentiation through its interaction with CD4. The protein inhibits early signaling events during T cell activation and IL-2 production. Because murine Experimental Autoimmune Encephalomyelitis development is mediated by central nervous system-infiltrating CD4+ T cells that are specific for myelin-associated proteins, we sought to determine whether the treatment of mice with Salp15 during EAE induction would prevent the generation of proinflammatory T cell responses and the development of the disease. Surprisingly, Salp15-treated mice developed more severe EAE than control animals. The treatment of EAE-induced mice with the tick saliva protein did not result in increased infiltration of T cells to the central nervous system, indicating that Salp15 had not affected the permeability of the blood-brain barrier. Salp15 treatment did not affect the development of antibody responses against the eliciting peptide or the presence of IFNγ in the sera. The treatment with Salp15 resulted, however, in the increased differentiation of Th17 cells in vivo, as evidenced by higher IL-17 production from PLP139-151-specific CD4+ T cells isolated from the central nervous system and the periphery. In vitro, Salp15 was able to induce the differentiation of Th17 cells in the presence of IL-6 and the absence of TGFβ These results suggest that a conductive milieu for the differentiation of Th17 cells can be achieved by restriction of the production of IL-2 during T cell differentiation, a role that may be performed by TGFβ and other immunosuppressive agents.  相似文献   
137.
NEMO is an integral part of the IκB kinase complex and serves as a molecular switch by which the NF-κB signaling pathway can be regulated. Oligomerization and polyubiquitin (poly-Ub) binding, mediated through the regulatory CC2-LZ domain, were shown to be key features governing NEMO function, but the relationship between these two activities remains unclear. In this study, we solved the structure of this domain in complex with a designed ankyrin repeat protein, which helps its crystallization. We generated several NEMO mutants in this domain, including those associated with human diseases incontinentia pigmenti and immunodeficiency with or without anhidrotic ectodermal dysplasia. Analytical ultracentrifugation and thermal denaturation experiments were used to evaluate the dimerization properties of these mutants. A fluorescence-based assay was developed, as well, to quantify the interaction to monoubiquitin and poly-Ub chains. Moreover, the effect of these mutations was investigated for the full-length protein. We show that a proper folding of the ubiquitin-binding domain, termed NOA/UBAN/NUB, into a stable coiled-coil dimer is required but not sufficient for efficient interaction with poly-Ub. In addition, we show that binding to poly-Ub and, to a lesser extent, to monoubiquitin increases the stability of the NOA coiled-coil dimer. Collectively, these data provide structural insights into how several pathological mutations within and outside of the CC2-LZ's NOA ubiquitin binding site affect IκB kinase activation in the NF-κB signaling pathway.  相似文献   
138.
139.
Trypanosoma cruzi-specific immune responses were evaluated in a total of 88 subjects living in areas endemic of Chagas disease of Argentina by IFN-γ ELISPOT assays and immunoblotting. Positive T. cruzi antigen-induced IFN-γ responses were detected in 42% of subjects evaluated (15/26 positive by conventional serology and 22/62 seronegative subjects). Using immunoblotting, T. cruzi-specific IgG reactivity was detected in all seropositive subjects and in 11% (7/61) of subjects negative by conventional serology. Measurements of T cell responses and antibodies by immunoblotting, in conjunction with conventional serology, might enhance the capability of detection of exposure to T. cruzi in endemic areas.  相似文献   
140.
The impedancimetric method is a technique for the rapid evaluation of milk bacterial content and also of its subproducts. Several authors have made use of culture conductance changes during bacterial growth for quantitative and qualitative assessments of microbial growth. However, interface capacitance curves, Ci, have not been used. In this paper, we quantify bacteria in cow raw milk by following their growth as the above-mentioned capacitance change time course event. With it, bigger growth variations, shorter detection times and a better coefficient of correlation with the plate count method were obtained than those yielded by conductance curves. Calibration was performed by plotting initial known concentrations, IC (CFU/ml), as a function of the time detection theshold (TDT).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号