首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10244篇
  免费   987篇
  国内免费   3篇
  11234篇
  2023年   53篇
  2022年   89篇
  2021年   205篇
  2020年   123篇
  2019年   157篇
  2018年   183篇
  2017年   177篇
  2016年   267篇
  2015年   402篇
  2014年   462篇
  2013年   552篇
  2012年   743篇
  2011年   739篇
  2010年   466篇
  2009年   390篇
  2008年   581篇
  2007年   598篇
  2006年   500篇
  2005年   481篇
  2004年   486篇
  2003年   438篇
  2002年   391篇
  2001年   162篇
  2000年   116篇
  1999年   143篇
  1998年   110篇
  1997年   93篇
  1996年   72篇
  1995年   65篇
  1994年   58篇
  1993年   53篇
  1992年   93篇
  1991年   86篇
  1990年   64篇
  1989年   76篇
  1988年   66篇
  1987年   57篇
  1986年   63篇
  1985年   72篇
  1984年   81篇
  1983年   58篇
  1982年   43篇
  1981年   41篇
  1980年   50篇
  1979年   53篇
  1978年   51篇
  1977年   50篇
  1976年   42篇
  1974年   42篇
  1972年   40篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
BACKGROUND: Human mesenchymal stem cells (hMSCs) are a promising target for ex vivo gene therapy and lentiviruses are excellent gene transfer vehicles in hMSCs since they achieve high transduction rates with long-term gene expression. Nevertheless, senescence of hMSCs may limit therapeutic applications due to time-consuming cell selection and viral titration. Here, we describe a fast and reliable method to determine functional lentiviral titer by quantitative polymerase chain reaction (qPCR) after highly efficient ex vivo gene transfer in hMSCs. METHODS: Lentivirus production was tested with different types of packaging systems. Using p24 ELISA remaining viral particles were detected in the cell culture supernatant. The lentiviral gene transfer efficiency was quantified by FACS analysis. Lentiviral titers were determined by qPCR of expressed transgenes. RESULTS: Third-generation self-inactivating vectors showed highly efficient gene transfer in hMSCs. No viral antigen was detected in the cell culture supernatant after four media changes, suggesting the absence of infectious particles after 4 days. We observed a linear correlation between virus dilution and level of transgene expression by qPCR analysis, therefore allowing viral titering by quantification of transgene expression. Finally, we demonstrated that transduced hMSCs retained their stem cell character by differentiation towards adipogenic, osteogenic and chondrogenic lineages. CONCLUSIONS: Quantification of transgene copy numbers by qPCR is a fast and reliable method to determine functional lentiviral titer after ex vivo gene transfer in hMSCs.  相似文献   
82.
SH2D5 is a mammalian-specific, uncharacterized adaptor-like protein that contains an N-terminal phosphotyrosine-binding domain and a C-terminal Src homology 2 (SH2) domain. We show that SH2D5 is highly enriched in adult mouse brain, particularly in Purkinjie cells in the cerebellum and the cornu ammonis of the hippocampus. Despite harboring two potential phosphotyrosine (Tyr(P)) recognition domains, SH2D5 binds minimally to Tyr(P) ligands, consistent with the absence of a conserved Tyr(P)-binding arginine residue in the SH2 domain. Immunoprecipitation coupled to mass spectrometry (IP-MS) from cultured cells revealed a prominent association of SH2D5 with breakpoint cluster region protein, a RacGAP that is also highly expressed in brain. This interaction occurred between the phosphotyrosine-binding domain of SH2D5 and an NxxF motif located within the N-terminal region of the breakpoint cluster region. siRNA-mediated depletion of SH2D5 in a neuroblastoma cell line, B35, induced a cell rounding phenotype correlated with low levels of activated Rac1-GTP, suggesting that SH2D5 affects Rac1-GTP levels. Taken together, our data provide the first characterization of the SH2D5 signaling protein.  相似文献   
83.
In this study, we investigated the metabolism of ethylene glycol in the Pseudomonas putida strains KT2440 and JM37 by employing growth and bioconversion experiments, directed mutagenesis, and proteome analysis. We found that strain JM37 grew rapidly with ethylene glycol as a sole source of carbon and energy, while strain KT2440 did not grow within 2 days of incubation under the same conditions. However, bioconversion experiments revealed metabolism of ethylene glycol by both strains, with the temporal accumulation of glycolic acid and glyoxylic acid for strain KT2440. This accumulation was further increased by targeted mutagenesis. The key enzymes and specific differences between the two strains were identified by comparative proteomics. In P. putida JM37, tartronate semialdehyde synthase (Gcl), malate synthase (GlcB), and isocitrate lyase (AceA) were found to be induced in the presence of ethylene glycol or glyoxylic acid. Under the same conditions, strain KT2440 showed induction of AceA only. Despite this difference, the two strains were found to use similar periplasmic dehydrogenases for the initial oxidation step of ethylene glycol, namely, the two redundant pyrroloquinoline quinone (PQQ)-dependent enzymes PedE and PedH. From these results we constructed a new pathway for the metabolism of ethylene glycol in P. putida. Furthermore, we conclude that Pseudomonas putida might serve as a useful platform from which to establish a whole-cell biocatalyst for the production of glyoxylic acid from ethylene glycol.  相似文献   
84.
Kirsch W  Herbort O  Butz MV  Kunde W 《PloS one》2012,7(4):e34880
We examined whether movement costs as defined by movement magnitude have an impact on distance perception in near space. In Experiment 1, participants were given a numerical cue regarding the amplitude of a hand movement to be carried out. Before the movement execution, the length of a visual distance had to be judged. These visual distances were judged to be larger, the larger the amplitude of the concurrently prepared hand movement was. In Experiment 2, in which numerical cues were merely memorized without concurrent movement planning, this general increase of distance with cue size was not observed. The results of these experiments indicate that visual perception of near space is specifically affected by the costs of planned hand movements.  相似文献   
85.
86.
Due to their peculiar stereochemistry and numerous biological activities, lignans are of widespread interest. As only a few biosynthetic steps have been clarified to date, we aimed to further resolve the molecular basis of lignan biosynthesis. To this end, we first established that the biologically active lignan (−)-hinokinin could be isolated from in vitro cultures of Linum corymbulosum. Two hypothetical pathways were outlined for the biosynthesis of (−)-hinokinin. In both pathways, (+)-pinoresinol serves as the primary substrate. In the first pathway, pinoresinol is reduced via lariciresinol to secoisolariciresinol by a pinoresinol–lariciresinol reductase, and methylenedioxy bridges are formed later. In the second pathway, pinoresinol itself is the substrate for formation of the methylenedioxy bridges, resulting in consecutive production of piperitol and sesamin. To determine which of the proposed hypothetical pathways acts in vivo , we first isolated several cDNAs encoding one pinoresinol-lariciresinol reductase ( PLR-Lc1 ), two phenylcoumaran benzylic ether reductases ( PCBER-Lc1 and PCBER-Lc2 ), and two PCBER-like proteins from a cDNA library of L. corymbulosum. PLR-Lc1 was found to be enantiospecific for the conversion of (+)-pinoresinol to (−)-secoisolariciresinol, which can be further converted to give (−)-hinokinin. Hairy root lines with significantly reduced expression levels of the plr-Lc1 gene were established using RNAi technology. Hinokinin accumulation was reduced to non-detectable levels in these lines. Our results strongly indicate that PLR-Lc1 participates in (−)-hinokinin biosynthesis in L. corymbulosum by the first of the two hypothetical pathways via (−)-secoisolariciresinol.  相似文献   
87.
Aim  Relationships between range size and species richness are contentious, yet they are key to testing the various hypotheses that attempt to explain latitudinal diversity gradients. Our goal is to utilize the largest data set yet compiled for New World woody plant biogeography to describe and assess these relationships between species richness and range size.
Location  North and South America.
Methods  We estimated the latitudinal extent of 12,980 species of woody plants (trees, shrubs, lianas). From these estimates we quantified latitudinal patterns of species richness and range size. We compared our observations with expectations derived from two null models.
Results   Peak richness and the smallest- and largest-ranged species are generally found close to the equator. In contrast to prominent diversity hypotheses: (1) mean latitudinal extent of tropical species is greater than expected; (2) latitudinal extent appears to be decoupled from species richness across New World latitudes, with abrupt transitions across subtropical latitudes; and (3) mean latitudinal extents show equatorial and north temperate peaks and subtropical minima. Our results suggest that patterns of range size and richness appear to be influenced by three broadly overlapping biotic domains (biotic provinces) for New World woody plants.
Main conclusions  Hypotheses that assume a direct relationship between range size and species richness may explain richness patterns within these domains, but cannot explain gradients in richness across the New World.  相似文献   
88.
Due to its fundamental role in shaping host selection behavior, we have analyzed the chemosensory repertoire of Chrysomela lapponica. This specialized leaf beetle evolved distinct populations which shifted from the ancestral host plant, willow (Salix sp., Salicaceae), to birch (Betula rotundifolia, Betulaceae). We identified 114 chemosensory candidate genes in adult C. lapponica: 41 olfactory receptors (ORs), eight gustatory receptors, 17 ionotropic receptors, four sensory neuron membrane proteins, 32 odorant binding proteins (OBPs), and 12 chemosensory proteins (CSP) by RNA‐seq. Differential expression analyses in the antennae revealed significant upregulation of one minus‐C OBP (ClapOBP27) and one CSP (ClapCSP12) in the willow feeders. In contrast, one OR (ClapOR17), four minus‐C OBPs (ClapOBP02, 07, 13, 20), and one plus‐C OBP (ClapOBP32) were significantly upregulated in birch feeders. The differential expression pattern in the legs was more complex. To narrow down putative ligands acting as cues for host discrimination, the relative abundance and diversity of volatiles of the two host plant species were analyzed. In addition to salicylaldehyde (willow‐specific), both plant species differed mainly in their emission rate of terpenoids such as (E,E)‐α‐farnesene (high in willow) or 4,8‐dimethylnona‐1,3,7‐triene (high in birch). Qualitatively, the volatiles were similar between willow and birch leaves constituting an “olfactory bridge” for the beetles. Subsequent structural modeling of the three most differentially expressed OBPs and docking studies using 22 host volatiles indicated that ligands bind with varying affinity. We suggest that the evolution of particularly minus‐C OBPs and ORs in C. lapponica facilitated its host plant shift via chemosensation of the phytochemicals from birch as novel host plant.  相似文献   
89.
The human bacterial pathogen, Vibrio vulnificus, is found in brackish waters and is concentrated by filter-feeding molluscan shellfish, especially oysters, which inhabit those waters. Ingestion of raw or undercooked oysters containing virulent strains of V. vulnificus can result in rapid septicemia and death in 50 % of victims. This review summarizes the current knowledge of the environmental interactions between these two organisms, including the effects of salinity and temperature on colonization, uptake, and depuration rates of various phenotypes and genotypes of the bacterium, and host–microbe immunological interactions.  相似文献   
90.

Background and Aims

Soil chronosequences on marine terraces along the Pacific Coast of California and Oregon show evidence of podzolization, though soils ultimately evolve to Ultisols. It is not clear if this pathway of soil evolution can be extended to the humid, inland Oregon Coast Range.

Methods

We analyzed soil properties for a fluvial terrace chronosequence sampled along the Siuslaw River (Oregon, USA) about 50 km from the Pacific coast. The seven terraces ranged in age from <3.5 ky to nearly 1,000 ky.

Results

There was no evidence of early podsolization. Instead, evidence was found that andisolization starts early and occurs even in older soils when pedogenic iron accumulation and clay synthesis and illuviation dominate. Soils develop the morphology characteristic of Ultisols sometime between 20 and 70 ky, but high levels of oxalate extractable iron and aluminum satisfy criteria of an andic subgroup. Alfisols are not formed as an intermediary stage.

Conclusions

The lack of Spodosols inland is due to the inland shift from udic to ustic or xeric moisture regime, which favors summer drying and ripening of short-range order minerals rather than deep leaching or translocation. Other factors are higher pH, different organic chemistry and faster calcium cycling under the Douglas fir inland when compared to the Sitka spruce of the coastal terraces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号