首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7845篇
  免费   855篇
  国内免费   2篇
  8702篇
  2023年   46篇
  2022年   76篇
  2021年   187篇
  2020年   110篇
  2019年   132篇
  2018年   162篇
  2017年   156篇
  2016年   228篇
  2015年   363篇
  2014年   407篇
  2013年   453篇
  2012年   616篇
  2011年   614篇
  2010年   383篇
  2009年   314篇
  2008年   462篇
  2007年   455篇
  2006年   388篇
  2005年   370篇
  2004年   397篇
  2003年   340篇
  2002年   307篇
  2001年   118篇
  2000年   84篇
  1999年   104篇
  1998年   83篇
  1997年   66篇
  1996年   50篇
  1995年   50篇
  1994年   40篇
  1993年   31篇
  1992年   70篇
  1991年   70篇
  1990年   47篇
  1989年   55篇
  1988年   37篇
  1987年   40篇
  1986年   43篇
  1985年   51篇
  1984年   55篇
  1983年   40篇
  1982年   28篇
  1981年   28篇
  1980年   31篇
  1979年   33篇
  1978年   32篇
  1977年   36篇
  1976年   28篇
  1974年   29篇
  1972年   30篇
排序方式: 共有8702条查询结果,搜索用时 15 毫秒
101.
Hemicellulose polysaccharides influence assembly and properties of the plant primary cell wall (PCW), perhaps by interacting with cellulose to affect the deposition and bundling of cellulose fibrils. However, the functional differences between plant cell wall hemicelluloses such as glucomannan, xylan, and xyloglucan (XyG) remain unclear. As the most abundant hemicellulose, XyG is considered important in eudicot PCWs, but plants devoid of XyG show relatively mild phenotypes. We report here that a patterned β-galactoglucomannan (β-GGM) is widespread in eudicot PCWs and shows remarkable similarities to XyG. The sugar linkages forming the backbone and side chains of β-GGM are analogous to those that make up XyG, and moreover, these linkages are formed by glycosyltransferases from the same CAZy families. Solid-state nuclear magnetic resonance indicated that β-GGM shows low mobility in the cell wall, consistent with interaction with cellulose. Although Arabidopsis β-GGM synthesis mutants show no obvious growth defects, genetic crosses between β-GGM and XyG mutants produce exacerbated phenotypes compared with XyG mutants. These findings demonstrate a related role of these two similar but distinct classes of hemicelluloses in PCWs. This work opens avenues to study the roles of β-GGM and XyG in PCWs.

Patterned β-GGM resembles xyloglucan in structure, biosynthesis, and function.

In a Nutshell Background: Plant primary cell walls (PCWs) need to be rigid enough to define the plant shape and yet allow cell expansion at the same time. Plants achieve this by forming a complex network that is composed of cellulose and various non-cellulosic polysaccharides, such as hemicelluloses. Cell walls differ in the abundance of the various hemicelluloses, and their roles are poorly understood. In contrast to xyloglucan (XyG), which has been the most extensively studied hemicellulose in the PCWs, neither the structure nor functions of glucomannan has been resolved. Question: Are the functions of the glucomannan in PCWs distinct from the roles of the most abundant hemicellulose, XyG? Findings: We discovered a type of glucomannan in eudicot PCWs, which we named β-galactoglucomannan (β-GGM) because of its distinctive structures: disaccharide side chains of β-Gal-α-Gal and alternating repeats of Glc-Man in the backbone. Similarity to XyG in structure and biosynthesis led us to identify a β-galactosyltransferase for the β-GGM biosynthesis. We found that β-GGM contributed to normal cell expansion, in a way that was masked by the presence of XyG. These results suggest related functions of β-GGM to XyG, highlighting the necessity to consider the contribution of multiple hemicelluloses in the functional study of plant cell walls. Next steps: We would like to know how β-GGM binds to cellulose, and how this differs to cellulose binding of XyG. Investigation of the precise arrangements and interactions of cellulose and hemicelluloses including β-GGM and XyG will help further understanding of the enigmatic functions of hemicelluloses.  相似文献   
102.
BackgroundAfrican-Americans have the highest overall cancer death rate and shortest survival time of any racial or ethnic group in the United States. The most common cancer studied in African-American radiation therapy (RT) access disparities research is breast cancer. The goal of this study is to evaluate the impact of patient navigation on RT access for African-American breast cancer patients.Material and methodsThis study is a prospective survey-based evaluation of the impact of patient navigation on access to hypofractionated RT and financial toxicity in African-American breast cancer patients. The impact of patient navigation on RT access will be collated and analyzed from survey results pre-RT versus post-RT as well as for patients with versus without receipt of patient navigation. The validated COST-Functional Assessment of Chronic Illness Therapy score will be used to compare hypofractionation versus standard fractionated RT financial toxicity for patients with early-stage breast cancer who have received lumpectomy.ConclusionThis is the first study to investigate the impact of patient navigation on reducing RT access disparities facing African-American breast cancer patients. The natural progression of this work will be to expand this model to include additional breast cancer populations most vulnerable to suffering RT access disparities (Native American, Hispanic American, Appalachian) within the United States.  相似文献   
103.
One particular strategy to render anticancer therapies efficient consists of converting the patient's own tumor cells into therapeutic vaccines, via the induction of immunogenic cell death (ICD). One of the hallmarks of ICD dwells in the active release of ATP by cells committed to undergo, but not yet having succumbed to, apoptosis. We observed that the knockdown of essential autophagy-related genes (ATG3, ATG5, ATG7 and BECN1) abolishes the pre-apoptotic secretion of ATP by several human and murine cancer cell lines undergoing ICD. Accordingly, autophagy-competent, but not autophagy-deficient, tumor cells treated with ICD inducers in vitro could induce a tumor-specific immune response in vivo. Cancer cell lines stably depleted of ATG5 or ATG7 normally generate tumors in vivo, and such autophagy-deficient neoplasms, upon systemic treatment with ICD inducers, exhibit the same levels of apoptosis (as monitored by nuclear shrinkage and caspase-3 activation) and necrosis (as determined by following the kinetics of HMGB1 release) as their autophagy-proficient counterparts. However, autophagy-incompetent cancers fail to release ATP, to recruit immune effectors into the tumor bed and to respond to chemotherapy in conditions in which autophagy-competent tumors do so. The intratumoral administration of ecto-ATPase inhibitors increases extracellular ATP concentrations, re-establishes the therapy-induced recruitment of dendritic cells and T cells into the tumor bed, and restores the chemotherapeutic response of autophagy-deficient cancers. Altogether, these results suggest that autophagy-incompetent tumor cells escape from chemotherapy-induced (and perhaps natural?) immunosurveillance because they are unable to release ATP.  相似文献   
104.
Centromeres are difficult to map even in species where genetic resolution is excellent. Here we show that junctions between repeats provide reliable single-copy markers for recombinant inbred mapping within centromeres and pericentromeric heterochromatin. Repeat junction mapping was combined with anti-CENH3-mediated ChIP to provide a definitive map position for maize centromere 8.  相似文献   
105.
Rackham O  Brown CM 《The EMBO journal》2004,23(16):3346-3355
Protein expression depends significantly on the stability, translation efficiency and localization of mRNA. These qualities are largely dictated by the RNA-binding proteins associated with an mRNA. Here, we report a method to visualize and localize RNA-protein interactions in living mammalian cells. Using this method, we found that the fragile X mental retardation protein (FMRP) isoform 18 and the human zipcode-binding protein 1 ortholog IMP1, an RNA transport factor, were present on common mRNAs. These interactions occurred predominantly in the cytoplasm, in granular structures. In addition, FMRP and IMP1 interacted independently of RNA. Tethering of FMRP to an mRNA caused IMP1 to be recruited to the same mRNA and resulted in granule formation. The intimate association of FMRP and IMP1 suggests a link between mRNA transport and translational repression in mammalian cells.  相似文献   
106.
Reconstructing the colonization and demographic dynamics that gave rise to extant forests is essential to forecasts of forest responses to environmental changes. Classical approaches to map how population of trees changed through space and time largely rely on pollen distribution patterns, with only a limited number of studies exploiting DNA molecules preserved in wooden tree archaeological and subfossil remains. Here, we advance such analyses by applying high‐throughput (HTS) DNA sequencing to wood archaeological and subfossil material for the first time, using a comprehensive sample of 167 European white oak waterlogged remains spanning a large temporal (from 550 to 9,800 years) and geographical range across Europe. The successful characterization of the endogenous DNA and exogenous microbial DNA of 140 (~83%) samples helped the identification of environmental conditions favouring long‐term DNA preservation in wood remains, and started to unveil the first trends in the DNA decay process in wood material. Additionally, the maternally inherited chloroplast haplotypes of 21 samples from three periods of forest human‐induced use (Neolithic, Bronze Age and Middle Ages) were found to be consistent with those of modern populations growing in the same geographic areas. Our work paves the way for further studies aiming at using ancient DNA preserved in wood to reconstruct the micro‐evolutionary response of trees to climate change and human forest management.  相似文献   
107.
Global change may substantially affect biodiversity and ecosystem functioning but little is known about its effects on essential biotic interactions. Since different environmental drivers rarely act in isolation it is important to consider interactive effects. Here, we focus on how two key drivers of anthropogenic environmental change, climate change and the introduction of alien species, affect plant–pollinator interactions. Based on a literature survey we identify climatically sensitive aspects of species interactions, assess potential effects of climate change on these mechanisms, and derive hypotheses that may form the basis of future research. We find that both climate change and alien species will ultimately lead to the creation of novel communities. In these communities certain interactions may no longer occur while there will also be potential for the emergence of new relationships. Alien species can both partly compensate for the often negative effects of climate change but also amplify them in some cases. Since potential positive effects are often restricted to generalist interactions among species, climate change and alien species in combination can result in significant threats to more specialist interactions involving native species.  相似文献   
108.
Histone deacetylases have central functions in regulating stress defenses and development in plants. However, the knowledge about the deacetylase functions is largely limited to histones, although these enzymes were found in diverse subcellular compartments. In this study, we determined the proteome‐wide signatures of the RPD3/HDA1 class of histone deacetylases in Arabidopsis. Relative quantification of the changes in the lysine acetylation levels was determined on a proteome‐wide scale after treatment of Arabidopsis leaves with deacetylase inhibitors apicidin and trichostatin A. We identified 91 new acetylated candidate proteins other than histones, which are potential substrates of the RPD3/HDA1‐like histone deacetylases in Arabidopsis, of which at least 30 of these proteins function in nucleic acid binding. Furthermore, our analysis revealed that histone deacetylase 14 (HDA14) is the first organellar‐localized RPD3/HDA1 class protein found to reside in the chloroplasts and that the majority of its protein targets have functions in photosynthesis. Finally, the analysis of HDA14 loss‐of‐function mutants revealed that the activation state of RuBisCO is controlled by lysine acetylation of RuBisCO activase under low‐light conditions.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号