首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8677篇
  免费   1048篇
  国内免费   2篇
  2023年   46篇
  2022年   77篇
  2021年   192篇
  2020年   114篇
  2019年   132篇
  2018年   167篇
  2017年   159篇
  2016年   239篇
  2015年   380篇
  2014年   431篇
  2013年   475篇
  2012年   643篇
  2011年   651篇
  2010年   403篇
  2009年   329篇
  2008年   496篇
  2007年   480篇
  2006年   420篇
  2005年   396篇
  2004年   430篇
  2003年   373篇
  2002年   334篇
  2001年   147篇
  2000年   110篇
  1999年   127篇
  1998年   91篇
  1997年   79篇
  1996年   68篇
  1995年   66篇
  1994年   51篇
  1993年   42篇
  1992年   93篇
  1991年   93篇
  1990年   68篇
  1989年   79篇
  1988年   60篇
  1987年   58篇
  1986年   63篇
  1985年   70篇
  1984年   70篇
  1983年   52篇
  1982年   42篇
  1981年   47篇
  1980年   50篇
  1979年   49篇
  1977年   53篇
  1976年   39篇
  1973年   39篇
  1972年   38篇
  1971年   46篇
排序方式: 共有9727条查询结果,搜索用时 15 毫秒
991.
992.
An efficient genetic transformation procedure using a recombinant green fluorescent protein (GFP) has been developed in Hevea brasiliensis clone PB260. Transformation experiments have been performed using an Agrobacterium tumefaciens binary vector harbouring both uidA and S65T-GFP reporter genes in order to compare selection methods using glucuronidase assay (GUS activity) and paromomycin resistance, GFP activity and paromomycin resistance, or GFP activity only. At transient level, the number of spots showing GUS or GFP activities was similar for 4 and 5 days after coculture. After selection, stable transformation events were observed and led to the establishment of transgenic callus lines. A higher number of lines were generated with GFP selection compared to the GUS one. GFP selection is less time-consuming in terms of callus subculturing, and offers the possibility of producing antibiotic resistance marker-free transgenic plants.  相似文献   
993.
Focussing on the blood-feeding reduviid Rhodnius prolixus, we investigated the structure and function of the hypopharynx in (1) conducting the saliva towards the mouthparts and (2) bringing together the salivary pump and the stylets to ensure the difficult task of supplying the two closed antidromic streams of blood and saliva, while allowing the mouthparts to be moved forth and back during the feeding process. The distal apex of the hypopharynx forms a needle-like structure that is X-shaped in cross section. It arranges the interlocking of the maxillae in a manner resembling the fixed slider of a zip-lock. Further proximal, the hypopharynx extends into the maxillary food channel as a wide tongue. The salivary pump possesses two separate efferent ducts. The dorsal duct originates in the retrograde angle of the cupula (part of the salivarium) and conducts saliva directly into the maxillary salivary channel. The ventral duct originates at the distal opening of the cupula. It extends into a bag, the distal opening of which can be closed by a ventral bolster-like cuticle and opened by muscles. We show for the first time for heteropteran mouthparts that the saliva is not exclusively discharged into the maxillary salivary channel (via the dorsal efferent duct of the salivary pump), but that a large amount of saliva directly flows into the tube of the labium (via the ventral efferent duct of the salivary pump), which encloses the piercing stylets. However, within a short section, saliva may also pass from the ventral salivary duct into the maxillary salivary channel. Similar double salivary efferent ducts are present in the reduviids Triatoma dimidiata, T. infestans, Dipetalogaster maxima, Panstrongylus megistus, in the pyrrhocorid Pyrrhocoris apterus, and in the pentatomid Troilus luridus. It might thus be a more common feature of the Heteroptera.  相似文献   
994.
Broad modifications of various positions of the minimal natural epitope recognized by the myelin-associated glycoprotein (MAG), a blocker of regeneration of neurite injuries, produced sialosides with nanomolar affinities. However, important pharmacokinetic issues, for example, the metabolic stability of these sialosides, remain to be addressed. For this reason, the novel non-carbohydrate mimic 3 was designed and synthesized from (?)-quinic acid. For the design of 3, previously identified beneficial modifications of side chains of Neu5Ac were combined with the replacement of the ring oxygen by a methylene group and the substitution of the C(4)-OH by an acetamide. Although docking experiments to a homology model of MAG revealed that mimic 3 forms all but one of the essential hydrogen bonds identified for the earlier reported lead 2, its affinity was substantially reduced. Extensive molecular-dynamics simulation disclosed that the missing hydrogen bond of the former C(8)-OH leads to a change of the orientation of the side chain. As a consequence, an important hydrophobic contact is compromised leading to a loss of affinity.  相似文献   
995.
Some superfamilies contain large numbers of protein domains with very different functions. The ability to refine the functional classification of domains within these superfamilies is necessary for better understanding the evolution of functions and to guide function prediction of new relatives. To achieve this, a suitable starting point is the detailed analysis of functional divisions and mechanisms of functional divergence in a single superfamily. Here, we present such a detailed analysis in the superfamily of HUP domains. A biologically meaningful functional classification of HUP domains is obtained manually. Mechanisms of function diversification are investigated in detail using this classification. We observe that structural motifs play an important role in shaping broad functional divergence, whereas residue-level changes shape diversity at a more specific level. In parallel we examine the ability of an automated protocol to capture the biologically meaningful classification, with a view to automatically extending this classification in the future.  相似文献   
996.
997.
Varicella-zoster virus (VZV) infection is usually mild in healthy individuals but can cause severe disease in immunocompromised patients. Prophylaxis with varicella-zoster immunoglobulin can reduce the severity of VZV if given shortly after exposure. Glycoprotein H (gH) is a highly conserved herpesvirus protein with functions in virus entry and cell-cell spread and is a target of neutralizing antibodies. The anti-gH monoclonal antibody (MAb) 206 neutralizes VZV in vitro. To determine the requirement for gH in VZV pathogenesis in vivo, MAb 206 was administered to SCID mice with human skin xenografts inoculated with VZV. Anti-gH antibody given at 6 h postinfection significantly reduced the frequency of skin xenograft infection by 42%. Virus titers, genome copies, and lesion size were decreased in xenografts that became infected. In contrast, administering anti-gH antibody at 4 days postinfection suppressed VZV replication but did not reduce the frequency of infection. The neutralizing anti-gH MAb 206 blocked virus entry, cell fusion, or both in skin in vivo. In vitro, MAb 206 bound to plasma membranes and to surface virus particles. Antibody was internalized into vacuoles within infected cells, associated with intracellular virus particles, and colocalized with markers for early endosomes and multivesicular bodies but not the trans-Golgi network. MAb 206 blocked spread, altered intracellular trafficking of gH, and bound to surface VZV particles, which might facilitate their uptake and targeting for degradation. As a consequence, antibody interference with gH function would likely prevent or significantly reduce VZV replication in skin during primary or recurrent infection.Varicella-zoster virus (VZV) causes chicken pox (varicella) upon primary infection. Lifelong latency is established in neurons of the sensory ganglia, and reactivation leads to shingles (herpes zoster) (1). Disease is usually inconsequential in immunocompetent people but can be severe in immunocompromised patients. The current prophylaxis for these high-risk individuals exposed to VZV is high-titer immunoglobulin to VZV administered within 96 h of exposure. This prophylaxis does not always prevent disease, but the severity of symptoms and mortality rates are usually reduced (32).Glycoprotein H (gH) is a type 1 transmembrane protein that is required for virus-cell and cell-cell spread in all herpesviruses studied (12, 15, 24, 26). gH is an important target of the host immune system. Individuals who have had primary infection with VZV or herpes simplex virus (HSV), the most closely related human alphaherpesvirus, have humoral and cellular immunity against gH (1, 56). Immunization of mice with a recombinant vaccinia virus expressing VZV gH and its chaperone, glycoprotein L (gL), induced specific antibodies capable of neutralizing VZV in vitro (28, 37). Immunization of mice with purified HSV gH/gL protein resulted in the production of neutralizing antibodies and protected mice from HSV challenge (5, 44), and administration of an anti-HSV gH monoclonal antibody (MAb) protected mice from HSV challenge (16). Antibodies to HSV and Epstein-Barr virus gH effectively neutralize during virus penetration but not during adsorption in vitro, indicating an essential role for gH in the fusion of viral and cellular membranes but not in initial attachment of the virus to the cell (18, 33).Anti-gH MAb 206, an immunoglobulin G1 (IgG1) antibody which recognizes a conformation-dependent epitope on the mature glycosylated form of gH, neutralizes VZV infection in vitro in the absence of complement (35). MAb 206 inhibits cell-cell fusion in vitro, based on reductions in the number of infected cells and the number of infected nuclei within syncytia, and appears to inhibit the ability of virus particles to pass from the surface of an infected epithelial cell to a neighboring cell via cell extensions (8, 35, 43). When infected cells were treated with MAb 206 for 48 h postinfection (hpi), virus egress and syncytium formation were not apparent, but they were evident within 48 h after removal of the antibody, suggesting that the effect of the antibody was reversible and that there was a requirement for new gH synthesis and trafficking to produce cell-cell fusion. Conversely, nonneutralizing antibodies to glycoproteins E (gE) and I (gI), as well as an antibody to immediate-early protein 62 (IE62), had no effect on VZV spread (46).Like that of other herpesviruses, VZV entry into cells is presumed to require fusion of the virion envelope with the cell membrane or endocytosis followed by fusion. One of the hallmarks of VZV infection is cell fusion and formation of syncytia (8). Cell fusion can be detected as early as 9 hpi in vitro, although VZV spread from infected to uninfected cells is evident within 60 min (45). In vivo, VZV forms syncytia through its capacity to cause fusion of epidermal cells. Syncytia are evident in biopsies of varicella and herpes zoster skin lesions during natural infection and in SCIDhu skin xenografts (34). VZV gH is produced, processed in the Golgi apparatus, and trafficked to the cell membrane, where it might be involved in cell-cell fusion (11, 29, 35). gH then undergoes endocytosis and is trafficked back to the trans-Golgi network (TGN) for incorporation into the virion envelope (20, 31, 42). Since VZV is highly cell associated in vitro, little is known about the glycoproteins required for entry, but VZV gH is present in abundance in the skin vesicles during human chickenpox and zoster (55).Investigating the functions of gH in the pathogenesis of VZV infection in vivo is challenging because it is an essential protein and VZV is species specific for the human host. The objective of this study was to investigate the role of gH in VZV pathogenesis by establishing whether antibody-mediated interference with gH function could prevent or modulate VZV infection of differentiated human tissue in vivo, using the SCIDhu mouse model. The effects of antibody administration at early and later times after infection were determined by comparing infectious virus titers, VZV genome copies, and lesion formation in anti-gH antibody-treated xenografts. In vitro experiments were performed to determine the potential mechanism(s) of MAb 206 interference with gH during VZV replication, virion assembly, and cell-cell spread. The present study has implications for understanding the contributions of gH to VZV replication in vitro and in vivo, the mechanisms by which production of antibodies to gH by the host might restrict VZV infection, and the use of passive antibody prophylaxis in patients at high risk of serious illness caused by VZV.  相似文献   
998.
999.
Fibroblast growth factor (FGF) signaling regulates mammalian development and metabolism, and its dysregulation is implicated in many inherited and acquired diseases, including cancer. Heparan sulfate glycosaminoglycans (HSGAGs) are essential for FGF signaling as they promote FGF·FGF receptor (FGFR) binding and dimerization. Using novel organic synthesis protocols to prepare homogeneously sulfated heparin mimetics (HM), including hexasaccharide (HM6), octasaccharide (HM8), and decasaccharide (HM10), we tested the ability of these HM to support FGF1 and FGF2 signaling through FGFR4. Biological assays show that both HM8 and HM10 are significantly more potent than HM6 in promoting FGF2-mediated FGFR4 signaling. In contrast, all three HM have comparable activity in promoting FGF1·FGFR4 signaling. To understand the molecular basis for these differential activities in FGF1/2·FGFR4 signaling, we used NMR spectroscopy, isothermal titration calorimetry, and size-exclusion chromatography to characterize binding interactions of FGF1/2 with the isolated Ig-domain 2 (D2) of FGFR4 in the presence of HM, and binary interactions of FGFs and D2 with HM. Our data confirm the existence of both a secondary FGF1·FGFR4 interaction site and a direct FGFR4·FGFR4 interaction site thus supporting the formation of the symmetric mode of FGF·FGFR dimerization in solution. Moreover, our results show that the observed higher activity of HM8 relative to HM6 in stimulating FGF2·FGFR4 signaling correlates with the higher affinity of HM8 to bind and dimerize FGF2. Notably FGF2·HM8 exhibits pronounced positive binding cooperativity. Based on our findings we propose a refined symmetric FGF·FGFR dimerization model, which incorporates the differential ability of HM to dimerize FGFs.  相似文献   
1000.
The MAPK-activated protein kinases (MAPKAP kinases) MK2 and MK3 are directly activated via p38 MAPK phosphorylation, stabilize p38 by complex formation, and contribute to the stress response. The list of substrates of MK2/3 is increasing steadily. We applied a phosphoproteomics approach to compare protein phosphorylation in MK2/3-deficient cells rescued or not by ectopic expression of MK2. In addition to differences in phosphorylation of the known substrates of MK2, HSPB1 and Bag-2, we identified strong differences in phosphorylation of keratin 8 (K8). The phosphorylation of K8-Ser73 is catalyzed directly by p38, which in turn shows MK2-dependent expression. Notably, analysis of small molecule p38 inhibitors on K8-Ser73 phosphorylation also demonstrated reduced phosphorylations of keratins K18-Ser52 and K20-Ser13 but not of K8-Ser431 or K18-Ser33. Interestingly, K18-Ser52 and K20-Ser13 are not directly phosphorylated by p38 in vitro, but by MK2. Furthermore, anisomycin-stimulated phosphorylations of K20-Ser13 and K18-Ser52 are inhibited by small molecule inhibitors of both p38 and MK2. MK2 knockdown in HT29 cells leads to reduced K20-Ser13 phosphorylation, which further supports the notion that MK2 is responsible for K20 phosphorylation in vivo. Physiologic relevance of these findings was confirmed by differences of K20-Ser13 phosphorylation between the ileum of wild-type and MK2/3-deficient mice and by demonstrating p38- and MK2-dependent mucin secretion of HT29 cells. Therefore, MK2 and p38 MAPK function in concert to phosphorylate K8, K18, and K20 in intestinal epithelia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号