首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   343篇
  免费   37篇
  2022年   2篇
  2021年   4篇
  2020年   6篇
  2019年   6篇
  2018年   7篇
  2017年   8篇
  2016年   11篇
  2015年   13篇
  2014年   16篇
  2013年   24篇
  2012年   18篇
  2011年   22篇
  2010年   12篇
  2009年   17篇
  2008年   10篇
  2007年   19篇
  2006年   21篇
  2005年   16篇
  2004年   12篇
  2003年   7篇
  2002年   18篇
  2001年   12篇
  2000年   6篇
  1999年   7篇
  1998年   8篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   6篇
  1992年   5篇
  1991年   6篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   6篇
  1986年   5篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1980年   9篇
  1979年   7篇
  1976年   1篇
  1973年   1篇
  1972年   2篇
  1970年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有380条查询结果,搜索用时 15 毫秒
61.
Gluconacetobacter diazotrophicus is a plant-growth-promoting bacterium, which is able to colonize sugarcane and other plant species of economic importance. The potentially beneficial effects promoted by this bacterium on plants are nitrogen-fixation, production of phythormones, action against pathogens and mineral nutrient solubilization. In this study, the molecular mechanisms associated with phosphorus and zinc solubilization were analyzed. A transposon mutant library was constructed and screened to select for mutants defective for phosphorous [Ca5(PO4)3OH] and zinc (ZnO) solubilization. A total of five mutants were identified in each screen. Both screenings, performed independently, allowed to select the same mutants. The interrupted gene in each mutant was identified by sequencing and the results demonstrate that the production of gluconic acid is a required pathway for solubilization of such nutrients in G. diazotrophicus. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. A. C. Intorne and M. V. V. de Oliveira contributed equally to this work.  相似文献   
62.
Drought stress conditions (DC) reduce plant growth and nutrition, restraining the sustainable reestablishment of Nothofagus dombeyi in temperate south Chilean forest ecosystems. Ectomycorrhizal symbioses have been documented to enhance plant nitrogen (N) and phosphorus (P) uptake under drought, but the regulation of involved assimilative enzymes remains unclear. We studied 1-year-old N. dombeyi (Mirb.) Oerst. plants in association with the ectomycorrhizal fungi Pisolithus tinctorius (Pers.) Coker & Couch. and Descolea antartica Sing. In greenhouse experiments, shoot and root dry weights, mycorrhizal colonization, foliar N and P concentrations, and root enzyme activities [glutamate synthase (glutamine oxoglutarate aminotransferase (GOGAT), EC 1.4.1.13-14), glutamine synthetase (GS, EC 6.3.1.2), glutamate dehydrogenase (GDH, EC 1.4.1.2-4), nitrate reductase (NR, EC 1.6.6.1), and acid phosphomonoesterase (PME, EC 3.1.3.1-2)] were determined as a function of soil-water content. Inoculation of N. dombeyi with P. tinctorius and D. antartica significantly stimulated plant growth and increased plant foliar N and P concentrations, especially under DC. Ectomycorrhizal inoculation increased the activity of all studied enzymes relative to non-mycorrhizal plants under drought. We speculate that GDH is a key enzyme involved in the enhancement of ectomycorrhizal carbon (C) availability by fuelling the tricarboxylic acid (TCA) cycle under conditions of drought-induced carbon deficit. All studied assimilative enzymes of the ectomycorrhizal associations, involved in C, N, and P transfers, are closely interlinked and interdependent. The up-regulation of assimilative enzyme activities by ectomycorrhizal fungal root colonizers acts as a functional mechanism to increase seedling endurance to drought. We insist upon incorporating ectomycorrhizal inoculation in existing Chilean afforestation programs.  相似文献   
63.
The purpose of this study was to investigate the aluminum (Al) concentration in Lycopodium clavatum, Dicranopteris flexuosa, Sticherus nudus, Anemia villosa, Cyathea gibbosa, Pteridium arachnoideum, Pteris vittata, Thelypteris dentata, Blechnum occidentale, Elaphoglossum sporadolepis, Nephrolepis cordifolia and Polypodium pseudoaureum, species from 11 families with different phylogenetic position, found on soils with a high concentration of Al (up to 13 g kg?1 dry mass (DM)). When Al concentration and mineral nutrients in aerial organs were considered, pteridophytes were classified into three groups: group one included pteridophytes with Al concentrations over 1000 mg kg?1 DM in their aerial organs, a ratio between Al and essential plant nutrients such as Ca, Mg and P higher than one and a K/Al ratio between 0.68 and 2.56 mol mol?1. In group 1 was the well known Al-accumulator L. clavatum (Lycophyte) as well as the Neotropical ferns D. flexuosa, S. nudus (both basal leptosporangiate ferns), and C. gibbosa (core leptosporangiate tree fern). Group 2, ferns which accumulate Al over 1000 mg kg?1 DM in their fronds, and had an Al/Ca and Al/Mg ratio <1. Species in this group included E. sporadolepis and N. cordifolia (derived polypod ferns). Group 3, ferns classified as Al-excluders, showing Al concentration <782 mg kg?1 DM in the fronds, had Al/Ca and Al/Mg ratios <1, Al/P ratio ≤1 and a K/Al ratio between 18.10 and 80.36 mol mol?1. In group 3, were A. villosa (basal leptosporangiate fern) and the derived polypod ferns P. arachnoideum, P. vittata, T. dentata, B. occidentale and P. pseudoaureum. The translocation factor of Al from subterranean to aerial organs was up to 4 in S. nudus, and subterranean organs from E. sporadolepis showed the highest concentration of Al (12 g kg?1 DM). We coincide with early literature in that other criteria in addition to the Al concentration should be considered to define the Al accumulation, such as its relationship with macronutrients. For example, we propose the inclusion of K/Al ratio. We conclude that out of six Al-excluders five belonged to the derived polypods while two species from Polypodiales showed high Al concentrations. We reconfirm accumulation of Al in L. clavatum and C. gibbosa and discover two new Al-accumulating species in the more ancient ferns: S. nudus and D. flexuosa.  相似文献   
64.
Mahogunin ring finger-1 (MGRN1) is a RING domain-containing ubiquitin ligase mutated in mahoganoid, a mouse mutation causing coat color darkening, congenital heart defects, high embryonic lethality, and spongiform neurodegeneration. The melanocortin hormones regulate pigmentation, cortisol production, food intake, and body weight by signaling through five G protein-coupled receptors positively coupled to the cAMP pathway (MC1R–MC5R). Genetic analysis has shown that mouse Mgrn1 is an accessory protein for melanocortin signaling that may inhibit MC1R and MC4R by unknown mechanisms. These melanocortin receptors (MCRs) regulate pigmentation and body weight, respectively. We show that human melanoma cells express 4 MGRN1 isoforms differing in the C-terminal exon 17 and in usage of exon 12. This exon contains nuclear localization signals. MGRN1 isoforms decreased MC1R and MC4R signaling to cAMP, without effect on β2-adrenergic receptor. Inhibition was independent on receptor plasma membrane expression, ubiquitylation, internalization, or stability and occurred upstream of Gαs binding to/activation of adenylyl cyclase. MGRN1 co-immunoprecipitated with MCRs, suggesting a physical interaction of the proteins. Significantly, overexpression of Gαs abolished the inhibitory effect of MGRN1 and decreased co-immunoprecipitation with MCRs, suggesting competition between MGRN1 and Gαs for binding to MCRs. Although all MGRN1s were located in the cytosol in the absence of MCRs, exon 12-containing isoforms accumulated in the nuclei upon co-expression with the receptors. Therefore, MGRN1 inhibits MCR signaling by a new mechanism involving displacement of Gαs, thus accounting for key features of the mahoganoid phenotype. Moreover, MGRN1 might provide a novel pathway for melanocortin signaling from the cell surface to the nucleus.  相似文献   
65.

Introduction  

Infections commonly complicate the course of systemic lupus erythematosus (SLE). Our aim is to investigate the clinical predictors of major infections in patients with SLE.  相似文献   
66.
The site-specific integrase from bacteriophage phiC31 functions in mammalian cells and is being applied for genetic engineering, including gene therapy. The phiC31 integrase catalyzes precise, unidirectional recombination between its 30-40-bp attP and attB recognition sites. In mammalian cells, the enzyme also mediates integration of plasmids bearing attB into native sequences that have partial sequence identity with attP, termed pseudo attP sites. Here, we analyzed the features of phiC31-mediated integration into pseudo attP sites in the human genome. Sequence analysis of 196 independent integration events derived from three cell lines revealed approximately 101 integration sites: 56% of the events were recurrent integrations distributed among 19 pseudo attP sequences. Bioinformatics analysis revealed a approximately 30-bp palindromic consensus sequence motif shared by all of the repeat occurrences and most of the single occurrence sites, verifying that phiC31-mediated integration into pseudo attP sites is significantly guided by DNA sequence recognition. The most favored unique sequence in these cell lines occurred at chromosome 19q13.31 and accounted for 7.5% of integration events. Other frequent integration sites were in three specific sequences in subfamilies of ERVL and L1 repetitive sequences, accounting for an additional 17.9% of integration events. Integrations could occur in either orientation at a pseudo attP site, were often accompanied by small deletions, and typically occurred in a single copy per cell. A number of aberrant events were also described, including large deletions and chromosome rearrangements. phiC31 integrase-mediated integration only slightly favored genes and did not favor promoter regions. Gene density and expression studies suggested chromatin context effects. An analysis of the safety of integration sites in terms of proximity to cancer genes suggested minimal cancer risk. We conclude that integration systems derived from phiC31 integrase have great potential utility.  相似文献   
67.
In southern Brazilian apple (Malus spp.) orchards, predominantly organophosphates are used to control the oriental fruit moth, Cydia molesta (Busck) (Lepidoptera: Tortricidae), but control failures often occur. Therefore the susceptibility of three C. molesta Brazilian populations was investigated to five insecticides of different groups and modes of action, in comparison with a susceptible laboratory strain mass reared in southern France for >10 yr. At the same time, comparative biochemical and genetic analysis were performed, assessing the activities of the detoxification enzymatic systems and sequencing a gene of insecticide molecular target to find out markers associated with resistance. The three Brazilian populations were significantly resistant to chlorpyrifos ethyl compared with the reference strain. One of the field populations that had been frequently exposed to deltamethrin treatments showed significant decreasing susceptibility to this compound, whereas none of the three populations had loss of susceptibility to tebufenozide and thiacloprid compared with the reference strain. All three populations had slight but significant increases of glutathione transferase and carboxylesterases activities and significant decrease of specific acetylcholinesterase activities compared with the reference. Only the most resistant population to chlorpyriphos exhibited a significantly higher mixed function oxidase activity than the reference. The acetylcholinesterase of females was significantly less inhibited by carbaryl in the Brazilian populations than in the reference strain (1.7-2.5-fold), and this difference was not expressed in the male moth. However, no mutation in the MACE locus was detected. These biological and molecular characterizations of adaptive response to insecticides in C. molesta provide tools for early detection of insecticide resistance in field populations of this pest.  相似文献   
68.
Moderate reduction in the protein content of the mother's diet (hidden malnutrition) does not alter body and brain weights of rat pups at birth, but leads to dysfunction of neocortical noradrenaline systems together with impaired long-term potentiation and visuo-spatial memory performance. As β?-adrenoceptors and downstream protein kinase signaling are critically involved in synaptic long-term potentiation and memory formation, we evaluated the β?-adrenoceptor density and the expression of cyclic-AMP dependent protein kinase, calcium/calmodulin-dependent protein kinase and protein kinase Fyn, in the frontal cortex of prenatally malnourished adult rats. In addition, we also studied if β?-adrenoceptor activation with the selective β? agonist dobutamine could improve deficits of prefrontal cortex long-term potentiation presenting these animals. Prenatally malnourished rats exhibited half of β?-adrenoceptor binding, together with a 51% and 65% reduction of cyclic AMP-dependent protein kinase α and calcium/calmodulin-dependent protein kinase α expression, respectively, as compared with eutrophic animals. Administration of the selective β? agonist dobutamine prior to tetanization completely rescued the ability of the prefrontal cortex to develop and maintain long-term potentiation in the malnourished rats. Results suggest that under-expression of neocortical β?-adrenoceptors and protein kinase signaling in hidden malnourished rats functionally affects the synaptic networks subserving prefrontal cortex long-term potentiation. β?-adrenoceptor activation was sufficient to fully recover neocortical plasticity in the PKA- and calcium/calmodulin-dependent protein kinase II-deficient undernourished rats, possibly by producing extra amounts of cAMP and/or by recruiting alternative signaling cascades.  相似文献   
69.

Background

Vision loss due to vascular disease of the retina is a leading cause of blindness in the world. Retinal angiomatous proliferation (RAP) is a subgroup of neovascular age-related macular degeneration (AMD), whereby abnormal blood vessels develop in the retina leading to debilitating vision loss and eventual blindness. The novel mouse strain, neoretinal vascularization 2 (NRV2), shows spontaneous fundus changes associated with abnormal neovascularization. The purpose of this study is to characterize the induction of pathologic angiogenesis in this mouse model.

Methods

The NRV2 mice were examined from postnatal day 12 (p12) to 3 months. The phenotypic changes within the retina were evaluated by fundus photography, fluorescein angiography, optical coherence tomography, and immunohistochemical and electron microscopic analysis. The pathological neovascularization was imaged by confocal microscopy and reconstructed using three-dimensional image analysis software.

Results

We found that NRV2 mice develop multifocal retinal depigmentation in the posterior fundus. Depigmented lesions developed vascular leakage observed by fluorescein angiography. The spontaneous angiogenesis arose from the retinal vascular plexus at postnatal day (p)15 and extended toward retinal pigment epithelium (RPE). By three months of age, histological analysis revealed encapsulation of the neovascular lesion by the RPE in the photoreceptor cell layer and subretinal space.

Conclusions

The NRV2 mouse strain develops early neovascular lesions within the retina, which grow downward towards the RPE beginning at p15. This retinal neovascularization model mimics early stages of human retinal angiomatous proliferation (RAP) and will likely be a useful in elucidating targeted therapeutics for patients with ocular neovascular disease.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号