首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7451篇
  免费   522篇
  国内免费   1篇
  7974篇
  2023年   44篇
  2022年   119篇
  2021年   192篇
  2020年   145篇
  2019年   174篇
  2018年   218篇
  2017年   167篇
  2016年   292篇
  2015年   479篇
  2014年   459篇
  2013年   601篇
  2012年   686篇
  2011年   649篇
  2010年   370篇
  2009年   330篇
  2008年   421篇
  2007年   402篇
  2006年   368篇
  2005年   331篇
  2004年   286篇
  2003年   231篇
  2002年   256篇
  2001年   61篇
  2000年   48篇
  1999年   59篇
  1998年   70篇
  1997年   35篇
  1996年   36篇
  1995年   27篇
  1994年   28篇
  1993年   26篇
  1992年   39篇
  1991年   25篇
  1990年   25篇
  1989年   19篇
  1988年   19篇
  1987年   25篇
  1986年   13篇
  1985年   11篇
  1984年   19篇
  1983年   10篇
  1982年   13篇
  1981年   9篇
  1980年   14篇
  1979年   16篇
  1978年   14篇
  1977年   11篇
  1976年   7篇
  1974年   9篇
  1973年   20篇
排序方式: 共有7974条查询结果,搜索用时 13 毫秒
261.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a devastating inherited disorder characterized by episodic syncope and/or sudden cardiac arrest during exercise or acute emotion in individuals without structural cardiac abnormalities. Although rare, CPVT is suspected to cause a substantial part of sudden cardiac deaths in young individuals. Mutations in RYR2, encoding the cardiac sarcoplasmic calcium channel, have been identified as causative in approximately half of all dominantly inherited CPVT cases. Applying a genome-wide linkage analysis in a large Swedish family with a severe dominantly inherited form of CPVT-like arrhythmias, we mapped the disease locus to chromosome 14q31-32. Sequencing CALM1 encoding calmodulin revealed a heterozygous missense mutation (c.161A>T [p.Asn53Ile]) segregating with the disease. A second, de novo, missense mutation (c.293A>G [p.Asn97Ser]) was subsequently identified in an individual of Iraqi origin; this individual was diagnosed with CPVT from a screening of 61 arrhythmia samples with no identified RYR2 mutations. Both CALM1 substitutions demonstrated compromised calcium binding, and p.Asn97Ser displayed an aberrant interaction with the RYR2 calmodulin-binding-domain peptide at low calcium concentrations. We conclude that calmodulin mutations can cause severe cardiac arrhythmia and that the calmodulin genes are candidates for genetic screening of individual cases and families with idiopathic ventricular tachycardia and unexplained sudden cardiac death.  相似文献   
262.
Homocysteine (Hcy) editing by methionyl-tRNA synthetase results in the formation of Hcy-thiolactone and initiates a pathway that has been implicated in human disease. In addition to being cleared from the circulation by urinary excretion, Hcy-thiolactone is detoxified by the serum Hcy-thiolactonase/paraoxonase carried on high density lipoprotein. Whether Hcy-thiolactone is detoxified inside cells was unknown. Here we show that Hcy-thiolactone is hydrolyzed by an intracellular enzyme, which we have purified to homogeneity from human placenta and identified by proteomic analyses as human bleomycin hydrolase (hBLH). We have also purified an Hcy-thiolactonase from the yeast Saccharomyces cerevisiae and identified it as yeast bleomycin hydrolase (yBLH). BLH belongs to a family of evolutionarily conserved cysteine aminopeptidases, and its only known biologically relevant function was deamidation of the anticancer drug bleomycin. Recombinant hBLH or yBLH, expressed in Escherichia coli, exhibits Hcy-thiolactonase activity similar to that of the native enzymes. Active site mutations, C73A for hBLH and H369A for yBLH, inactivate Hcy-thiolactonase activities. Yeast blh1 mutants are deficient in Hcy-thiolactonase activity in vitro and in vivo, produce more Hcy-thiolactone, and exhibit greater sensitivity to Hcy toxicity than wild type yeast cells. Our data suggest that BLH protects cells against Hcy toxicity by hydrolyzing intracellular Hcy-thiolactone.  相似文献   
263.
The bioactive lipid sphingosine 1-phosphate (S1P) is known to exert powerful biological effects through the interaction with various members of the endothelial differentiation gene (EDG) receptor family, recently renamed S1P receptors. In the present study, evidence is provided that differentiation of C2C12 myoblasts into myotubes was accompanied by profound changes of EDG/S1P receptor expression. Indeed, in differentiated cells a significant increase of EDG3/S1P3 together with a large decrease of EDG5/S1P2 expression at mRNA as well as protein level was detected. Moreover, S1P was capable to initiate the signalling pathways downstream to cytosolic Ca(2+) increase in myotubes, similarly to that observed in myoblasts, whereas the signalling of the bioactive lipid to phospholipase D (PLD), but not that of bradykinin (BK) or lysophosphatidic acid (LPA), was found impaired in differentiated cells. Intriguingly, overexpression of EDG5/S1P2, but not EDG1/S1P1 or EDG3/S1P3, potentiated the efficacy of S1P to stimulate PLD, strongly suggesting a role for EDG5/S1P2 in the signalling to PLD. This view was also supported by the marked reduction of S1P-induced PLD activity in myoblasts loaded with antisense oligodeoxyribonucleotides (ODN) to EDG5/S1P2. Furthermore, overexpression of EDG5/S1P2 rescued the coupling of S1P signalling to PLD in C2C12 myotubes. Experimental evidence here provided supports the notion that EDG5/S1P2 plays a dominant role in the coupling of S1P to PLD in myoblasts and that the down-regulation of the receptor subtype is responsible for the specific uncoupling of S1P signalling to PLD in myotubes.  相似文献   
264.
In eukaryotes, there are still steps of the vitamin B1 biosynthetic pathway not completely understood. In Arabidopsis thaliana, THI1 protein has been associated with the synthesis of the thiazole ring, a finding supported by the identification of a thiamine pyrophosphate (TPP)-like compound in its structure. Here, we investigated THI1 and its mutant THI1(A140V), responsible for the thiamin auxotrophy in a A. thaliana mutant line, aiming to clarify the impact of this mutation in the stability and activity of THI1. Recently, the THI1 orthologue (THI4) was revealed to be responsible for the donation of the sulfur atom from a cysteine residue to the thiazole ring in the thiamine intermediate. In this context, we carried out a cysteine quantification in THI1 and THI1(A140V) using electron spin resonance (ESR). These data showed that THI1(A140V) contains more sulfur-containing cysteines than THI1, indicating that the function as a sulfur donor is conserved, but the rate of donation reaction is somehow affected. Also, the bound compounds were isolated from both proteins and are present in different amounts in each protein. Unfolding studies presented differences in melting temperatures and also in the concentration of guanidine at which half of the protein unfolds, thus showing that THI1(A140V) has its conformational stability affected by the mutation. Hence, despite keeping its function in the early steps during the synthesis of TPP precursor, our studies have shown a decrease in the THI1(A140V) stability, which might be slowing down the biological activity of the mutant, and thus contributing to thiamin auxotrophy.  相似文献   
265.
Cellobiohydrolase Cel48C from Paenibacillus sp. BP-23, an enzyme displaying limited activity on most cellulosic substrates, was assayed for activity in the presence of other bacterial endo- or exocellulases. Significant enhanced activity was observed when Cel48C was incubated in the presence of Paenibacillus sp. BP-23 endoglucanase Cel9B or Thermobifida fusca cellulases Cel6A and Cel6B, indicating that Cel48C acts synergistically with them. Maximum synergism rates on bacterial microcrystalline cellulose or filter paper were obtained with a mixture of Paenibacillus cellulases Cel9B and Cel48C, accompanied by T. fusca exocellulase Cel6B. Synergism was also observed in cell extracts from recombinant clone E. coli pUCel9-Cel48 expressing the two contiguous Paenibacillus cellulases Cel9B and Cel48C. The enhanced cellulolytic activity displayed by the cellulase mixtures assayed could be used as an efficient tool for biotechnological applications like pulp and paper manufacturing.  相似文献   
266.

Background  

Metabolic flux profiling based on the analysis of distribution of stable isotope tracer in metabolites is an important method widely used in cancer research to understand the regulation of cell metabolism and elaborate new therapeutic strategies. Recently, we developed software Isodyn, which extends the methodology of kinetic modeling to the analysis of isotopic isomer distribution for the evaluation of cellular metabolic flux profile under relevant conditions. This tool can be applied to reveal the metabolic effect of proapoptotic drug edelfosine in leukemia Jurkat cell line, uncovering the mechanisms of induction of apoptosis in cancer cells.  相似文献   
267.
Owing to the remarkable progress of molecular techniques, heterozygosity‐fitness correlations (HFCs) have become a popular tool to study the impact of inbreeding in natural populations. However, their underlying mechanisms are often hotly debated. Here we argue that these “debates” rely on verbal arguments with no basis in existing theory and inappropriate statistical testing, and that it is time to reconcile HFC with its historical and theoretical fundaments. We show that available data are quantitatively and qualitatively consistent with inbreeding‐based theory. HFC can be used to estimate the impact of inbreeding in populations, although such estimates are bound to be imprecise, especially when inbreeding is weak. Contrary to common belief, linkage disequilibrium is not an alternative to inbreeding, but rather comes with some forms of inbreeding, and is not restricted to closely linked loci. Finally, the contribution of local chromosomal effects to HFC, while predicted by inbreeding theory, is expected to be small, and has rarely if ever proven statistically significant using adequate tests. We provide guidelines to safely interpret and quantify HFCs, and present how HFCs can be used to quantify inbreeding load and unravel the structure of natural populations.  相似文献   
268.
269.
Aerobic ammonium-oxidizing bacteria (AerAOB) and anoxic ammonium-oxidizing bacteria (AnAOB) cooperate in partial nitritation/anammox systems to remove ammonium from wastewater. In this process, large granular microbial aggregates enhance the performance, but little is known about granulation so far. In this study, three suspended-growth oxygen-limited autotrophic nitrification-denitrification (OLAND) reactors with different inoculation and operation (mixing and aeration) conditions, designated reactors A, B, and C, were used. The test objectives were (i) to quantify the AerAOB and AnAOB abundance and the activity balance for the different aggregate sizes and (ii) to relate aggregate morphology, size distribution, and architecture putatively to the inoculation and operation of the three reactors. A nitrite accumulation rate ratio (NARR) was defined as the net aerobic nitrite production rate divided by the anoxic nitrite consumption rate. The smallest reactor A, B, and C aggregates were nitrite sources (NARR, >1.7). Large reactor A and C aggregates were granules capable of autonomous nitrogen removal (NARR, 0.6 to 1.1) with internal AnAOB zones surrounded by an AerAOB rim. Around 50% of the autotrophic space in these granules consisted of AerAOB- and AnAOB-specific extracellular polymeric substances. Large reactor B aggregates were thin film-like nitrite sinks (NARR, <0.5) in which AnAOB were not shielded by an AerAOB layer. Voids and channels occupied 13 to 17% of the anoxic zone of AnAOB-rich aggregates (reactors B and C). The hypothesized granulation pathways include granule replication by division and budding and are driven by growth and/or decay based on species-specific physiology and by hydrodynamic shear and mixing.In the last few years, autotrophic nitrogen removal via partial nitritation and anoxic ammonium oxidation (anammox) has evolved from lab- to full-scale treatment of nitrogenous wastewaters with a low biodegradable organic compound content, and this evolution has been driven mainly by a significant decrease in the operational costs compared to the costs of conventional nitrification and heterotrophic denitrification (11, 23). Oxygen-limited autotrophic nitrification and denitrification (OLAND) is one of the autotrophic processes used and is a one-stage procedure; i.e., partial nitritation and anammox occur in the same reactor (30). The “functional” autotrophic microorganisms in OLAND include aerobic ammonium-oxidizing bacteria (AerAOB) and anoxic ammonium-oxidizing bacteria (AnAOB). With oxygen, AerAOB oxidize ammonium to nitrite (nitritation), and with the nitrite AnAOB oxidize the residual ammonium to form dinitrogen gas and some nitrate (anammox). Additional aerobic nitrite oxidation to nitrate (nitratation) by nitrite-oxidizing bacteria (NOB) lowers the nitrogen removal efficiency, but it can, for instance, be prevented at low dissolved oxygen (DO) levels because the oxygen affinity of AerAOB is higher than that of NOB (16). Reactor configurations for the OLAND process can be based on suspended biomass growing in aggregates, like that in a sequencing batch reactor (SBR) (37) or a gas lift or upflow reactor (32). For suspended-growth systems there are two important challenges: biomass retention and equilibrated microbial activities.High biomass retention efficiency is a prerequisite in anammox technologies because of the slow growth of AnAOB (33). In suspended biomass systems, settling properties determine the retention of biomass and are related to the microbial aggregate morphology (floc or granule) and size. Granules can be defined as compact and dense aggregates with an approximately spherical external appearance that do not coagulate under decreased hydrodynamic shear conditions and settle significantly faster than flocs (18). Toh and coworkers calculated a lower sludge volume index for aerobic granules than for aerobic flocs and also showed that there was an increase in the settling velocity with increasing granule size (35). Hence, in terms of physical properties, large granules are preferable for suspended-growth applications.OLAND aggregate size not only influences settling properties but also affects the proportion of microbial nitrite production and consumption; lower AerAOB activity and higher AnAOB activity were observed with larger aggregates (25, 37). Theoretically, a microbial aggregate with equal nitrite production and nitrite consumption can remove ammonium autonomously, because of its independence from other aggregates for acquisition and conversion of nitrite. Hence, with an increasing aggregate size and thus with a decreasing ratio of nitrite production to nitrite consumption, three functional categories of aggregates can be distinguished: nitrite sources, autonomous nitrogen removers, and nitrite sinks. Because minimal nitrite accumulation is one of the prerequisites for high nitrogen removal efficiency in OLAND reactors, the presence of excess small aggregates is undesirable (9, 37).Although large granular aggregates are desirable for biomass retention and activity balance, so far no formation mechanisms have been proposed for OLAND granules, in contrast to the well-studied anaerobic (13) and aerobic (1) granules. In order to determine general and environment-specific determinants for aggregate size and architecture, three suspended-growth OLAND reactors with different inoculation and operation (mixing and aeration) parameters were selected, and these reactors were designated reactors A, B, and C (Table (Table1).1). The first objective of this study was to gain more insight into the relationship between OLAND aggregate size, AerAOB and AnAOB abundance, and the activity balance. The second objective was to propose pathways for aggregation and granulation by relating (dis)similarities in aggregate size distribution, morphology, and architecture to differences in reactor inoculation and operation.

TABLE 1.

Overview of the three OLAND reactor systems from which suspended biomass samples were obtained
ParameterReactor AaReactor BaReactor C
Reactor typeSBRSBRUpflow reactor
Vol (m3)0.0024.1600
Reactor ht/diam ratio0.940.5-0.8
InoculumOLAND biofilmActivated sludgeAnammox granules
WastewaterSyntheticDomesticbIndustrialc
Influent ammonium concn (mg N liter−1)230-330800250-350
Nitrogen removal rate (g N liter−1 day −1)0.45,d 1.1e0.651.3
Effluent nitrite concn (mg N liter−1)30-40d5-105-10
Influent COD/effluent COD (mg liter−1)0/0240/220200/150
pH7.4-7.87.4-7.68.0
Temp (°C)352530-35
DO level (mg O2 liter−1)0.4-1.10.5-1.02.0-3.0
Mixing mechanismMagnetic stirrerBladed impellerAeration
Biomass retention mechanismMSV, >0.73 m h−1MSV, >1.4 m h−1Three-phase separator
Sampling time (months after start-up)2d830
Open in a separate windowaAggregates settling at a rate higher than the minimum settling velocity (MSV) were not washed out of the sequencing batch reactors (SBR). The MSV was calculated by dividing the vertical distance of the water volume decanted per cycle by the settling time.bSupernatant from a municipal sludge digestor.cEffluent from a potato-processing factory pretreated with anaerobic digestion and struvite precipitation.dObtained at the end of a reactor start-up study (37).eObtained at the end of a reactor start-up study (9).  相似文献   
270.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号