首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6265篇
  免费   440篇
  国内免费   4篇
  6709篇
  2023年   23篇
  2022年   82篇
  2021年   158篇
  2020年   73篇
  2019年   98篇
  2018年   137篇
  2017年   121篇
  2016年   201篇
  2015年   290篇
  2014年   326篇
  2013年   420篇
  2012年   529篇
  2011年   603篇
  2010年   318篇
  2009年   280篇
  2008年   371篇
  2007年   435篇
  2006年   365篇
  2005年   328篇
  2004年   305篇
  2003年   315篇
  2002年   302篇
  2001年   54篇
  2000年   28篇
  1999年   42篇
  1998年   47篇
  1997年   43篇
  1996年   32篇
  1995年   31篇
  1994年   18篇
  1993年   21篇
  1992年   15篇
  1991年   14篇
  1989年   12篇
  1988年   9篇
  1987年   8篇
  1985年   8篇
  1984年   11篇
  1982年   11篇
  1981年   10篇
  1980年   12篇
  1977年   21篇
  1976年   18篇
  1975年   12篇
  1973年   9篇
  1972年   12篇
  1969年   10篇
  1968年   13篇
  1967年   7篇
  1966年   11篇
排序方式: 共有6709条查询结果,搜索用时 15 毫秒
61.
Abstract

A novel simulation interface is being developed as an educational tool to help students better understand fundamentals of materials science. This interface makes use of virtual reality (VR) technology consisting of PC-based graphics and a force-feedback haptic device. Visualization of atomistic processes with simultaneous tactile sensation via the haptic provides a powerful method for understanding complex phenomena that are otherwise difficult to comprehend. Modules are described that allow students to interactively explore interatomic bonding and single-atom diffusion through materials.  相似文献   
62.
Abstract

Oligonucleotides 3′-d(GT)5-(CH2CH2O)3-d(GT)5-3′ (parGT), containing GT repeats present in the telomeric DNA from Saccharomyces cerevisiae, had been demonstrated to form bimolecular structure, GT-quadruplex (qGT) [O. F. Borisova et al. FEBS Letters 306, 140–142 (1992)]. Four d(GT)5 strands of the GT-quadruplex are parallel and form five G-quartets while thymines are bulged out. The four GT repeats when flanked by guanines, 3′-dG(TG)4G-(CH2CH2O)3- dG(GT)4G-3′ (hp-GT), had been shown to form a novel parallel-stranded (ps) double helix with G·G and T·T base pairs (hp-GT ps-DNA) [A. K. Shchyolkina et al. J. Biomol. Struct. Dynam. 18, 493–503 (2001)]. In the present study the intercalator ethidium bromide (Et) was used for probing the two structures. The mode of Et binding and its effect on thermostability of qGT and hp-GT were compared. The quantum yield (q) and the fluorescence lifetime (τ) of Et:qGT (q = 0.15 ±0.01 and τ = 24 ±1 ns) and Et:hp-GT (q = 0.10 ± 0.01 and τ = 16.5 ± 1 ns) indicative of intercalation mode of Et binding were determined. Et binding to qGT was found to be cooperative with corresponding coefficient ω = 3.9 ± 0.1 and the binding constant K= (6.4 ± 0.1)·10M?1. The maximum number of Et molecules intercalating into GT-quadruplex is as high as twice the number of inerspaces between G-quartets (eight in our case). The data conform to the model of Et association with GT-quadruplex suggested earlier [O. F. Borisova et al. Mol. Biol. (Russ) 35, 732–739 (2001)]. The anticooperative type of Et binding was observed in case of hp- GT ps-DNA, with the maximum number of bound Et molecules, N = 4 ÷ 5, and the association constant K = (1.5 ± 0.1)·105 M?1. Thermodynamic parameters of formation of Et:qGT and EtBr:hp-GT complexes were calculated from UV thermal denaturation profiles.  相似文献   
63.
Successful conservation requires an understanding of animal movement patterns and space use. Such data are hard to obtain, however, when difficult terrain, nocturnal habits, or lack of habituation make direct observation impractical. White-footed tamarins (Saguinus leucopus) are small primates endemic to Colombia that are in danger of extinction due to habitat loss, fragmentation, and the illegal pet trade. Here, we report the results of the first study to use radio-tracking to investigate white-footed tamarin ranging behavior. We recorded the movements of three neighboring tamarin groups simultaneously for 3 month using radio-telemetry. Home range sizes (estimated using both minimum convex polygon and fixed kernel contour methods) were substantially larger than reported in previous studies that did not use remote-tracking. Monte Carlo resampling procedures revealed that home range size differed significantly among the three groups but that the mean daily path length did not. As in other tamarin species, the degree of range overlap between neighboring social groups was high, ranging from 27 to 81%. Using a randomization test, we showed that the observed mean distance between groups was significantly lower than expected by chance for two of the three group dyads. This pattern of intergroup “attraction,” in conjunction with substantial range overlap and high population density, implies that the Bellavista Forest, one of the few remaining habitats of Saguinus leucopus, may be saturated, and promoting habitat restoration should be a priority for the conservation of this species.  相似文献   
64.
Plant viruses use movement proteins (MPs) to modify intercellular pores called plasmodesmata (PD) to cross the plant cell wall. Many viruses encode a conserved set of three MPs, known as the triple gene block (TGB), typified by Potato virus X (PVX). In this paper, using live-cell imaging of viral RNA (vRNA) and virus-encoded proteins, we show that the TGB proteins have distinct functions during movement. TGB2 and TGB3 established endoplasmic reticulum–derived membranous caps at PD orifices. These caps harbored the PVX replicase and nonencapsidated vRNA and represented PD-anchored viral replication sites. TGB1 mediated insertion of the viral coat protein into PD, probably by its interaction with the 5′ end of nascent virions, and was recruited to PD by the TGB2/3 complex. We propose a new model of plant virus movement, which we term coreplicational insertion, in which MPs function to compartmentalize replication complexes at PD for localized RNA synthesis and directional trafficking of the virus between cells.  相似文献   
65.
The phloretin-induced reduction in the dipole potential of planar lipid bilayers containing cholesterol, ergosterol, stigmasterol, 7-dehydrocholesterol and 5α-androstan-3β-ol was investigated. It is shown that effects depend on the type and concentration of membrane sterol. It is supposed that the effectiveness of phloretin in reducing the dipole potential of the bilayers that contain cholesterol, ergosterol and 7-dehydrocholesterol correlates with the ordering and condensing effects. The role of the concentration-dependent ability of different sterols to promote lateral heterogeneity in membranes is also discussed.  相似文献   
66.
In preparing for the threat of a pandemic of avian H5N1 influenza virus, we need to consider the significant delay (4 to 6 months) necessary to produce a strain-matched vaccine. As some degree of cross-reactivity between seasonal influenza vaccines and H5N1 virus has been reported, this was further explored in the ferret model to determine the targets of protective immunity. Ferrets were vaccinated with two intramuscular inoculations of trivalent inactivated split influenza vaccine or subcomponent vaccines, with and without adjuvant, and later challenged with a lethal dose of A/Vietnam/1203/2004 (H5N1) influenza virus. We confirmed that vaccination with seasonal influenza vaccine afforded partial protection against lethal H5N1 challenge and showed that use of either AlPO4 or Iscomatrix adjuvant with the vaccine resulted in complete protection against disease and death. The protection was due exclusively to the H1N1 vaccine component, and although the hemagglutinin contributed to protection, the dominant protective response was targeted toward the neuraminidase (NA) and correlated with sialic acid cleavage-inhibiting antibody titers. Purified heterologous NA formulated with Iscomatrix adjuvant was also protective. These results suggest that adjuvanted seasonal trivalent vaccine could be used as an interim measure to decrease morbidity and mortality from H5N1 prior to the availability of a specific vaccine. The data also highlight that an inducer of cross-protective immunity is the NA, a protein whose levels are not normally monitored in vaccines and whose capacity to induce immunity in recipients is not normally assessed.  相似文献   
67.
68.
69.
The aims of the present study were to assess the potential of natural attenuation or bioaugmentation to reduce soil molinate contamination in paddy field soils and the impact of these bioremediation strategies on the composition of soil indigenous microbiota. A molinate mineralizing culture (mixed culture DC) was used as inoculum in the bioaugmentation assays. Significantly higher removal of molinate was observed in bioaugmentation than in natural attenuation microcosms (63 and 39 %, respectively) after 42 days of incubation at 22 °C. In the bioaugmentation assays, the impact of Gulosibacter molinativorax ON4T on molinate depletion was observed since the gene encoding the enzyme responsible for the initial molinate breakdown (harboured by that actinobacterium) was only detected in inoculated microcosms. Nevertheless, the exogenous mixed culture DC did not overgrow as the heterotrophic counts of the bioaugmentation microcosms were not significantly different from those of natural attenuation and controls. Moreover, the actinobacterial clone libraries generated from the bioaugmentation microcosms did not include any 16S rRNA gene sequences with significant similarity to that of G. molinativorax ON4T. The multivariate analysis of the 16S rRNA DGGE patterns of the soil microcosm suggested that the activity of mixed culture DC did not affect the soil bacterial community structure since the DGGE patterns of the bioaugmentation microcosms clustered with those of natural attenuation and controls. Although both bioremediation approaches removed molinate without indigenous microbiota perturbation, the results suggested that bioaugmentation with mixed culture DC was more effective to treat soils contaminated with molinate.  相似文献   
70.
Physical properties of capsids of plant and animal viruses are important factors in capsid self-assembly, survival of viruses in the extracellular environment, and their cell infectivity. Combined AFM experiments and computational modeling on subsecond timescales of the indentation nanomechanics of Cowpea Chlorotic Mottle Virus capsid show that the capsid’s physical properties are dynamic and local characteristics of the structure, which change with the depth of indentation and depend on the magnitude and geometry of mechanical input. Under large deformations, the Cowpea Chlorotic Mottle Virus capsid transitions to the collapsed state without substantial local structural alterations. The enthalpy change in this deformation state ΔHind = 11.5–12.8 MJ/mol is mostly due to large-amplitude out-of-plane excitations, which contribute to the capsid bending; the entropy change TΔSind = 5.1–5.8 MJ/mol is due to coherent in-plane rearrangements of protein chains, which mediate the capsid stiffening. Direct coupling of these modes defines the extent of (ir)reversibility of capsid indentation dynamics correlated with its (in)elastic mechanical response to the compressive force. This emerging picture illuminates how unique physico-chemical properties of protein nanoshells help define their structure and morphology, and determine their viruses’ biological function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号