首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   11篇
  213篇
  2023年   2篇
  2022年   3篇
  2021年   11篇
  2020年   5篇
  2019年   5篇
  2018年   6篇
  2017年   2篇
  2016年   12篇
  2015年   6篇
  2014年   14篇
  2013年   17篇
  2012年   11篇
  2011年   16篇
  2010年   18篇
  2009年   5篇
  2008年   13篇
  2007年   13篇
  2006年   13篇
  2005年   10篇
  2004年   8篇
  2003年   10篇
  2002年   13篇
排序方式: 共有213条查询结果,搜索用时 15 毫秒
51.
The adaptive immunity of bacteria against foreign nucleic acids, mediated by CRISPR (clustered regularly interspaced short palindromic repeats), relies on the specific incorporation of short pieces of the invading foreign DNA into a special genomic locus, termed CRISPR array. The stored sequences (spacers) are subsequently used in the form of small RNAs (crRNAs) to interfere with the target nucleic acid. We explored the DNA-binding mechanism of the immunization protein Csn2 from the human pathogen Streptococcus agalactiae using different biochemical techniques, atomic force microscopic imaging and molecular dynamics simulations. The results demonstrate that the ring-shaped Csn2 tetramer binds DNA ends through its central hole and slides inward, likely by a screw motion along the helical path of the enclosed DNA. The presented data indicate an accessory function of Csn2 during integration of exogenous DNA by end-joining.  相似文献   
52.
This work aimed to establish the lineage of cells similar to the interstitial cells of Cajal (ICC), the arterial ICC-like (AIL) cells, which have recently been described in resistance arteries, and to study their location in the artery wall. Segments of guinea-pig mesenteric arteries and single AIL cells freshly isolated from them were used. Confocal imaging of immunostained cells or segments and electron microscopy of artery segments were used to test for the presence and cellular localization of selected markers, and to localize AIL cells in intact artery segments. AIL cells were negative for PGP9.5, a neural marker, and for von Willebrand factor (vWF), an endothelial cell marker. They were positive for smooth muscle alpha-actin and smooth muscle myosin heavy chain (SM-MHC), but expressed only a small amount of smoothelin, a marker of contractile smooth muscle cells (SMC), and of myosin light chain kinase (MLCK), a critical enzyme in the regulation of smooth muscle contraction. Cell isolation in the presence of latrunculin B, an actin polymerization inhibitor, did not cause the disappearance of AIL cells from cell suspension. The fluorescence of basal lamina protein collagen IV was comparable between the AIL cells and the vascular SMCs and the fluorescence of laminin was higher in AIL cells compared to vascular SMCs. Moreover, cells with thin processes were found in the tunica media of small resistance arteries using transmission electron microscopy. The results suggest that AIL cells are immature or phenotypically modulated vascular SMCs constitutively present in resistance arteries.  相似文献   
53.
The aggregation of amyloid-β (Aβ) is postulated to be the crucial event in Alzheimer’s disease (AD). In particular, small neurotoxic Aβ oligomers are considered to be responsible for the development and progression of AD. Therefore, elimination of thesis oligomers represents a potential causal therapy of AD. Starting from the well-characterized d-enantiomeric peptide D3, we identified D3 derivatives that bind monomeric Aβ. The underlying hypothesis is that ligands bind monomeric Aβ and stabilize these species within the various equilibria with Aβ assemblies, leading ultimately to the elimination of Aβ oligomers. One of the hereby identified d-peptides, DB3, and a head-to-tail tandem of DB3, DB3DB3, were studied in detail. Both peptides were found to: (i) inhibit the formation of Thioflavin T-positive fibrils; (ii) bind to Aβ monomers with micromolar affinities; (iii) eliminate Aβ oligomers; (iv) reduce Aβ-induced cytotoxicity; and (v) disassemble preformed Aβ aggregates. The beneficial effects of DB3 were improved by DB3DB3, which showed highly enhanced efficacy. Our approach yielded Aβ monomer-stabilizing ligands that can be investigated as a suitable therapeutic strategy against AD.  相似文献   
54.
We have previously shown that GABA protects pancreatic islet cells against apoptosis and exerts anti-inflammatory effects. Notably, GABA inhibited the activation of NF-κB in both islet cells and lymphocytes. NF-κB activation is detrimental to beta cells by promoting apoptosis. However, the mechanisms by which GABA mediates these effects are unknown. Because the above-mentioned effects mimic the activity of sirtuin 1 (SIRT1) in beta cells, we investigated whether it is involved. SIRT1 is an NAD+-dependent deacetylase that enhances insulin secretion, and counteracts inflammatory signals in beta cells. We found that the incubation of a clonal beta-cell line (rat INS-1) with GABA increased the expression of SIRT1, as did GABA receptor agonists acting on either type A or B receptors. NAD+ (an essential cofactor of SIRT1) was also increased. GABA augmented SIRT1 enzymatic activity, which resulted in deacetylation of the p65 component of NF-κB, and this is known to interfere with the activation this pathway. GABA increased insulin production and reduced drug-induced apoptosis, and these actions were reversed by SIRT1 inhibitors. We examined whether SIRT1 is similarly induced in newly isolated human islet cells. Indeed, GABA increased both NAD+ and SIRT1 (but not sirtuins 2, 3 and 6). It protected human islet cells against spontaneous apoptosis in culture, and this was negated by a SIRT1 inhibitor. Thus, our findings suggest that major beneficial effects of GABA on beta cells are due to increased SIRT1 and NAD+, and point to a new pathway for diabetes therapy.  相似文献   
55.
The inner membrane of mitochondria is especially protein rich and displays a unique morphology characterized by large invaginations, the mitochondrial cristae, and the inner boundary membrane, which is in proximity to the outer membrane. Mitochondrial inner membrane proteins appear to be not evenly distributed in the inner membrane, but instead organize into functionally distinct subcompartments. It is unknown how the organization of the inner membrane is achieved. We identified MINOS1/MIO10 (C1orf151/YCL057C-A), a conserved mitochondrial inner membrane protein. mio10-mutant yeast cells are affected in growth on nonfermentable carbon sources and exhibit altered mitochondrial morphology. At the ultrastructural level, mutant mitochondria display loss of inner membrane organization. Proteomic analyses reveal MINOS1/Mio10 as a novel constituent of Mitofilin/Fcj1 complexes in human and yeast mitochondria. Thus our analyses reveal new insight into the composition of the mitochondrial inner membrane organizing machinery.  相似文献   
56.
57.
Defects in frataxin result in Friedreich ataxia, a genetic disease characterized by early onset of neurodegeneration, cardiomyopathy, and diabetes. Frataxin is a conserved mitochondrial protein that controls iron needed for iron-sulfur cluster assembly and heme synthesis and also detoxifies excess iron. Studies in vitro have shown that either monomeric or oligomeric frataxin delivers iron to other proteins, whereas ferritin-like frataxin particles convert redox-active iron to an inert mineral. We have investigated how these different forms of frataxin are regulated in vivo. In Saccharomyces cerevisiae, only monomeric yeast frataxin (Yfh1) was detected in unstressed cells when mitochondrial iron uptake was maintained at a steady, low nanomolar level. Increments in mitochondrial iron uptake induced stepwise assembly of Yfh1 species ranging from trimer to > or = 24-mer, independent of interactions between Yfh1 and its major iron-binding partners, Isu1/Nfs1 or aconitase. The rate-limiting step in Yfh1 assembly was a structural transition that preceded conversion of monomer to trimer. This step was induced, independently or synergistically, by mitochondrial iron increments, overexpression of wild type Yfh1 monomer, mutations that stabilize Yfh1 trimer, or heat stress. Faster assembly kinetics correlated with reduced oxidative damage and higher levels of aconitase activity, respiratory capacity, and cell survival. However, deregulation of Yfh1 assembly resulted in Yfh1 aggregation, aconitase sequestration, and mitochondrial DNA depletion. The data suggest that Yfh1 assembly responds to dynamic changes in mitochondrial iron uptake or stress exposure in a highly controlled fashion and that this may enable frataxin to simultaneously promote respiratory function and stress tolerance.  相似文献   
58.
Overexpression of human KCNA5 increases IK V and enhances apoptosis   总被引:1,自引:0,他引:1  
Apoptotic cell shrinkage, an early hallmark of apoptosis, is regulated by K+ efflux and K+ channel activity. Inhibited apoptosis and downregulated K+ channels in pulmonary artery smooth muscle cells (PASMC) have been implicated in development of pulmonary vascular medial hypertrophy and pulmonary hypertension. The objective of this study was to test the hypothesis that overexpression of KCNA5, which encodes a delayed-rectifier voltage-gated K+ (Kv) channel, increases K+ currents and enhances apoptosis. Transient transfection of KCNA5 caused 25- to 34-fold increase in KCNA5 channel protein level and 24- to 29-fold increase in Kv channel current (IK(V)) at +60 mV in COS-7 and rat PASMC, respectively. In KCNA5-transfected COS-7 cells, staurosporine (ST)-mediated increases in caspase-3 activity and the percentage of cells undergoing apoptosis were both enhanced, whereas basal apoptosis (without ST stimulation) was unchanged compared with cells transfected with an empty vector. In rat PASMC, however, transfection of KCNA5 alone caused marked increase in basal apoptosis, in addition to enhancing ST-mediated apoptosis. Furthermore, ST-induced apoptotic cell shrinkage was significantly accelerated in COS-7 cells and rat PASMC transfected with KCNA5, and blockade of KCNA5 channels with 4-aminopyridine (4-AP) reduced K+ currents through KCNA5 channels and inhibited ST-induced apoptosis in KCNA5-transfected COS-7 cells. Overexpression of the human KCNA5 gene increases K+ currents (i.e., K+ efflux or loss), accelerates apoptotic volume decrease (AVD), increases caspase-3 activity, and induces apoptosis. Induction of apoptosis in PASMC by KCNA5 gene transfer may serve as an important strategy for preventing the progression of pulmonary vascular wall thickening and for treating patients with idiopathic pulmonary arterial hypertension (IPAH). potassium ion channel; pulmonary hypertension  相似文献   
59.
We propose an extended Gaussian mixture model for the distribution of causal effects of common single nucleotide polymorphisms (SNPs) for human complex phenotypes that depends on linkage disequilibrium (LD) and heterozygosity (H), while also allowing for independent components for small and large effects. Using a precise methodology showing how genome-wide association studies (GWASs) summary statistics (z-scores) arise through LD with underlying causal SNPs, we applied the model to GWAS of multiple human phenotypes. Our findings indicated that causal effects are distributed with dependence on total LD and H, whereby SNPs with lower total LD and H are more likely to be causal with larger effects; this dependence is consistent with models of the influence of negative pressure from natural selection. Compared with the basic Gaussian mixture model it is built on, the extended model—primarily through quantification of selection pressure—reproduces with greater accuracy the empirical distributions of z-scores, thus providing better estimates of genetic quantities, such as polygenicity and heritability, that arise from the distribution of causal effects.  相似文献   
60.
This paper offers the results of a synthesis and study of cytotoxicity and the anti-Epstein-Barr virus (EBV) activity of new 2-deoxy-2-chloro-pyranosyl derivatives of 4-tosyl-5-trifluoromethyl-1,2,3-triazole obtained via the addition reaction of the corresponding 2-N-chlorotriazole to the double bond of 3,4,6-tri-O-acetyl-D-glucal. Nucleoside mimetics, derivatives of 4-tosyl-5-polyfluoroalkyl-1,2,3-triazoles containing fragments of 3-chloro-tetrahydrofuran, 3-chloro-tetrahydropyran, tetrahydropyran, dihydrofuran, dihydropyran, or acyclic substituents, were also studied. Evaluation of cytotoxicity (trypan blue and MTT methods) and anti-EBV activity (polymerase chain reaction (PCR) method) showed high selectivity indices for the compounds 4a, 4b, 5b, 6, and 8. A total of 15 novel compounds were examined in this study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号