首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2025篇
  免费   213篇
  2022年   25篇
  2021年   46篇
  2020年   17篇
  2019年   26篇
  2018年   36篇
  2017年   29篇
  2016年   48篇
  2015年   65篇
  2014年   76篇
  2013年   109篇
  2012年   158篇
  2011年   138篇
  2010年   96篇
  2009年   83篇
  2008年   102篇
  2007年   128篇
  2006年   105篇
  2005年   116篇
  2004年   109篇
  2003年   86篇
  2002年   92篇
  2001年   28篇
  2000年   26篇
  1999年   25篇
  1998年   17篇
  1997年   21篇
  1996年   18篇
  1995年   18篇
  1994年   12篇
  1992年   31篇
  1991年   22篇
  1990年   19篇
  1989年   13篇
  1988年   15篇
  1987年   17篇
  1986年   17篇
  1985年   10篇
  1984年   18篇
  1983年   19篇
  1982年   12篇
  1981年   15篇
  1979年   9篇
  1978年   10篇
  1977年   11篇
  1976年   11篇
  1975年   9篇
  1974年   19篇
  1973年   13篇
  1971年   14篇
  1968年   10篇
排序方式: 共有2238条查询结果,搜索用时 24 毫秒
991.
Synaptic vesicles (SVs) are small, membrane-bound organelles that are found in the synaptic terminal of neurons. Although tremendous progress has been made in understanding the protein machinery that drives fusion of SVs with the presynaptic membrane, little progress has been made in understanding changes in the membrane structure that accompany this process. We used lipid monolayers of defined composition to mimic biological membranes, which were probed by x-ray reflectivity and grazing incidence x-ray diffraction. These techniques allowed us to successfully monitor structural changes in the membranes at molecular level, both in response to injection of SVs in the subphase below the monolayer, as well as to physiological cues involved in neurotransmitter release, such as increases in the concentration of the membrane lipid PIP2, or addition of physiological levels of Ca2+. Such structural changes may well modulate vesicle fusion in vivo.  相似文献   
992.
Transient absorption changes induced by excitation of isolated reaction centers (RCs) from Rhodobacter sphaeroides with 600nm laser pulses of 20fs (full width at half maximum) were monitored in the wavelength region of 420-560nm. The spectral features of the spectrum obtained are characteristic for an electrochromic band shift of the single carotenoid (Car) molecule spheroidene, which is an integral constituent of these RCs. This effect is assigned to an electrochromic bandshift of Car due to the local electric field of the dipole moment formed by electronic excitation of bacteriochlorophyll (BChl) molecule(s) in the neighborhood of Car. Based on the known distances between the pigments, the monomeric BChl (B(B)) in the inactive B-branch is inferred to dominate this effect. The excitation of B(B) at 600nm leads to a transition into the S(2) state (Q(x) band), which is followed by rapid internal conversion to the S(1) state (Q(y) band), thus leading to a change of strength and orientation of the dipole moment, i.e., of the electric field acting on the Car molecule. Therefore, the time course of the electrochromic bandshift reflects the rate of the internal conversion from S(2) to S(1) of B(B). The evaluation of the kinetics leads to a value of 30fs for this relaxation process. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   
993.
994.
Lipid peroxidation products, such as 4-hydroxy-trans-2-nonenal (HNE), cause endothelial activation, and they increase the adhesion of the endothelium to circulating leukocytes. Nevertheless, the mechanisms underlying these effects remain unclear. We observed that in HNE-treated human umbilical vein endothelial cells, some of the protein-HNE adducts colocalize with the endoplasmic reticulum (ER) and that HNE forms covalent adducts with several ER chaperones that assist in protein folding. We also found that at concentrations that did not induce apoptosis or necrosis, HNE activated the unfolded protein response, leading to an increase in XBP-1 splicing, phosphorylation of protein kinase-like ER kinase and eukaryotic translation initiation factor 2α, and the induction of ATF3 and ATF4. This increase in eukaryotic translation initiation factor 2α phosphorylation was prevented by transfection with protein kinase-like ER kinase siRNA. Treatment with HNE increased the expression of the ER chaperones, GRP78 and HERP. Exposure to HNE led to a depletion of reduced glutathione and an increase in the production of reactive oxygen species (ROS); however, glutathione depletion and ROS production by tert-butyl-hydroperoxide did not trigger the unfolded protein response. Pretreatment with a chemical chaperone, phenylbutyric acid, or adenoviral transfection with ATF6 attenuated HNE-induced monocyte adhesion and IL-8 induction. Moreover, phenylbutyric acid and taurine-conjugated ursodeoxycholic acid attenuated HNE-induced leukocyte rolling and their firm adhesion to the endothelium in rat cremaster muscle. These data suggest that endothelial activation by HNE is mediated in part by ER stress, induced by mechanisms independent of ROS production or glutathione depletion. The induction of ER stress may be a significant cause of vascular inflammation induced by products of oxidized lipids.  相似文献   
995.
996.
The TRPV4 Ca(2+)-permeable channel is sensitive to mechanical stimuli. In the current study we have employed immunocytochemical staining in kidney slices and functional assessments (Ca(2+) imaging) in isolated, split-opened, tubule segments to define TRPV4 sites of expression and flow-dependent function in the collecting duct system. Staining patterns revealed strong expression of TRPV4 along the entire collecting duct system with highest levels at the apical (luminal)/subapical region of the principal cells (PCs), the dominant cell type, with more diffuse staining in intercalated cells (ICs). Using fluorescence Ca(2+) imaging and the selective TRPV4 agonist, GSK1016790A, we demonstrated functional TRPV4 channels in PCs and ICs of split-opened cortical collecting ducts and connecting tubules. The agonist was ineffective in inducing a rise in [Ca(2+)](i) in the absence of extracellular Ca(2+) or in tubules from TRPV4-deficient animals. Most importantly, a 10-fold elevation in luminal (apical) fluid flow induced a rapid and sustained influx of Ca(2+) that was abolished by the TRPV channel inhibitor, ruthenium red, or in tubules isolated from TRPV4 deficient animals. We concluded that TRPV4 is highly expressed along the entire collecting duct system where it appears to function as a sensor/transducer of flow-induce mechanical stresses.  相似文献   
997.
We have shown previously that myorod, a molluscan thick filament protein of unknown function, is phosphorylated by vertebrate smooth myosin light chain kinase (MLCK) in N-terminal unique region. The aim of the present study was to clarify whether such phosphorylation may occur in molluscan muscles. We detected three kinases endogenous to molluscan catch muscle, namely, to the complex of surface thick filament proteins that consists of twitchin, myosin, and myorod. The first kinase was a protein kinase A because it was inhibited by a specific inhibitor; the second one was associated with twitchin and phosphorylated myorod at its N-terminal unique region independently of Ca2+; and the third kinase was bound to myosin and phosphorylated myorod as well as myosin in the C-terminal part of both proteins. The myosin-associated kinase was inhibited by micromolar concentration of calcium ions. This enzyme could be separated from myosin by chromatography, whereas the kinase associated with twitchin could not be separated from twitchin. Since twitchin has a MLCK-like domain, it is possible that this domain was responsible for myorod phosphorylation. Phosphorylation of myorod within the twitchin–myosin–myorod complex increased the actin-activated Mg2+-ATPase activity of myosin. Taken together, these results indicate that phosphorylation of myorod by kinases associated with key proteins of catch contraction may contribute to the functional activity of myorod in molluscan smooth muscle.  相似文献   
998.
Conformations and catalytic rates of enzymes fluctuate over a wide range of timescales. Despite these fluctuations, there exist some limiting cases in which the enzymatic catalytic rate follows the macroscopic rate equation such as the Michaelis-Menten law. In this paper we investigate the applicability of macroscopic rate laws for fluctuating enzyme systems in which catalytic transitions are slower than ligand binding-dissociation reactions. In this quasi-equilibrium limit, for an arbitrary reaction scheme we show that the catalytic rate has the same dependence on ligand concentrations as obtained from mass-action kinetics even in the presence of slow conformational fluctuations. These results indicate that the timescale of conformational dynamics – no matter how slow – will not affect the enzymatic rate in quasi-equilibrium limit. Our numerical results for two enzyme-catalyzed reaction schemes involving multiple substrates and inhibitors further support our general theory.  相似文献   
999.

Background

Obligate intracellular bacteria of arthropods often exhibit a significant role in either human health or arthropod ecology.

Methodology/Principal Findings

An obligate intracellular gamma-proteobacterium was isolated from the actively questing hard tick Ixodes ricinus using mammalian and amphibian cell lines. Transmission electron microscopy revealed a unique morphology of the bacterium, including intravacuolar localization of bacteria grouped predominantly in pairs and internal structures composed of electron-dense crystal-like structures and regular multilayer sheath-like structures. The isolate 20B was characterized to determine its taxonomic position using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that this strain belongs to the family Coxiellaceae, order Legionellales of Gamma-proteobacteria, and the closest relatives are different Rickettsiella spp. The level of 16S rRNA gene sequence similarity between strain 20B and other recognized species of the family was below 94.5%. Partial sequences of the rpoB, parC and ftsY genes confirmed the phylogenetic position of the new isolate. The G+C content estimated on the basis of whole genome analysis of strain 20B was 37.88%. On the basis of its phenotypic and genotypic properties, together with phylogenetic distinctiveness, we propose that strain 20B to be classified in the new genus Diplorickettsia as the type strain of a novel species named Diplorickettsia massiliensis sp. nov.

Conclusions/Significance

Considering the source of its isolation (hard tick, often biting humans) the role of this bacterium in the pathology of humans, animals and ticks should be further investigated.  相似文献   
1000.
Progression through mitosis requires the coordinated regulation of Cdk1 kinase activity. Activation of Cdk1 is a multistep process comprising binding of Cdk1 to cyclin B, relocation of cyclin-kinase complexes to the nucleus, activating phosphorylation of Cdk1 on Thr161 by the Cdk-activating kinase (CAK; Cdk7 in metazoans), and removal of inhibitory Thr14 and Tyr15 phosphorylations. This dephosphorylation is catalyzed by the dual specific Cdc25 phosphatases, which occur in three isoforms in mammalian cells, Cdc25A, -B, and -C. We find that expression of Cdc25A leads to an accelerated G2/M phase transition. In Cdc25A-overexpressing cells, Cdk1 exhibits high kinase activity despite being phosphorylated on Tyr15. In addition, Tyr15-phosphorylated Cdk1 binds more cyclin B in Cdc25A-overexpressing cells compared with control cells. Consistent with this observation, we demonstrate that in human transformed cells, Cdc25A and Cdc25B, but not Cdc25C phosphatases have an effect on timing and efficiency of cyclin-kinase complex formation. Overexpression of Cdc25A or Cdc25B promotes earlier assembly and activation of Cdk1-cyclin B complexes, whereas repression of these phosphatases by short hairpin RNA has a reverse effect, leading to a substantial decrease in amounts of cyclin B-bound Cdk1 in G2 and mitosis. Importantly, we find that Cdc25A overexpression leads to an activation of Cdk7 and increase in Thr161 phosphorylation of Cdk1. In conclusion, our data suggest that complex assembly and dephosphorylation of Cdk1 at G2/M is tightly coupled and regulated by Cdc25 phosphatases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号