首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1455篇
  免费   128篇
  2023年   4篇
  2022年   20篇
  2021年   41篇
  2020年   15篇
  2019年   25篇
  2018年   33篇
  2017年   28篇
  2016年   46篇
  2015年   56篇
  2014年   62篇
  2013年   90篇
  2012年   143篇
  2011年   115篇
  2010年   86篇
  2009年   75篇
  2008年   90篇
  2007年   111篇
  2006年   82篇
  2005年   94篇
  2004年   94篇
  2003年   63篇
  2002年   68篇
  2001年   8篇
  2000年   6篇
  1999年   8篇
  1998年   16篇
  1997年   14篇
  1996年   9篇
  1995年   12篇
  1994年   6篇
  1993年   4篇
  1992年   5篇
  1991年   5篇
  1990年   3篇
  1987年   5篇
  1986年   2篇
  1984年   4篇
  1983年   5篇
  1982年   6篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1976年   2篇
  1974年   2篇
  1968年   1篇
  1960年   1篇
  1959年   1篇
  1958年   3篇
  1957年   1篇
  1956年   1篇
排序方式: 共有1583条查询结果,搜索用时 15 毫秒
991.
The precise molecular mechanisms enabling cancer cells to metastasize from the primary tumor to different tissue locations are still largely unknown. Secretion of some proteins by metastatic cells could facilitate metastasis formation. The comparison of secreted proteins from cancer cells with different metastatic capabilities in vivo might provide insight into proteins involved in the metastatic process. Comparison of the secreted proteins from the mouse breast cancer cell line 4T1 and its highly metastatic 4T1.2 clone revealed a prominent differentially secreted protein which was identified as SLPI (secretory leukocyte protease inhibitor). Western blotting indicated higher levels of the protein in both conditioned media and whole cell lysates of 4T1.2 cells. Additionally higher levels of SLPI were also observed in 4T1.2 breast tumors in vivo following immunohistochemical staining. A comparison of SLPI mRNA levels by gene profiling using microarrays and RT-PCR did not detect major differences in SLPI gene expression between the 4T1 and 4T1.2 cells indicating that SLPI secretion is regulated at the protein level. Our results demonstrate that secretion of SLPI is drastically increased in highly metastatic cells, suggesting a possible role for SLPI in enhancing the metastatic behavior of breast cancer cell line 4T1.  相似文献   
992.
993.
A novel methanol assimilating yeast species Komagataella kurtzmanii is described using the type strain VKPM Y-727 (=KBP Y-2878 = UCD-FST 76-20 = Starmer #75-208.2 = CBS 12817 = NRRL Y-63667) isolated by W.T. Starmer from a fir flux in the Catalina Mountains, Southern AZ, USA. The new species is registered in MycoBank under MB 803919. The species was differentiated by divergence in gene sequences for D1/D2 LSU rRNA, ITS1-5.8S-ITS2, RNA polymerase subunit I, translation elongation factor-1α and mitochondrial small subunit rRNA. K. kurtzmanii differs from its phenotypically similar sibling species Komagataella pastoris, Komagataella pseudopastoris, Komagataella phaffii, Komagataella populi and Komagataella ulmi by absence of growth at 35 °C and inability to assimilate trehalose.  相似文献   
994.
Two house mouse subspecies occur in Europe, eastern and northern Mus musculus musculus (Mmm) and western and southern Mus musculus domesticus (Mmd). A secondary hybrid zone occurs where their ranges meet, running from Scandinavia to the Black Sea. In this paper, we tested a hypothesis that the apicomplexan protozoan species Cryptosporidium tyzzeri has coevolved with the house mouse. More specifically, we assessed to what extent the evolution of this parasite mirrors divergence of the two subspecies. In order to test this hypothesis, we analysed sequence variation at five genes (ssrRNA, Cryptosporidium oocyst wall protein (COWP), thrombospondin-related adhesive protein of Cryptosporidium 1 (TRAP-C1), actin and gp60) in C. tyzzeri isolates from Mmd and Mmm sampled along a transect across the hybrid zone from the Czech Republic to Germany. Mmd samples were supplemented with mice from New Zealand. We found two distinct isolates of C. tyzzeri, each occurring exclusively in one of the mouse subspecies (C. tyzzeri-Mmm and C. tyzzeri-Mmd). In addition to genetic differentiation, oocysts of the C. tyzzeri-Mmd subtype (mean: 4.24 × 3.69 μm) were significantly smaller than oocysts of C. tyzzeri-Mmm (mean: 4.49 × 3.90 μm). Mmm and Mmd were susceptible to experimental infection with both C. tyzzeri subtypes; however, the subtypes were not infective for the rodent species Meriones unguiculatus, Mastomys coucha, Apodemus flavicollis or Cavia porcellus. Overall, our results support the hypothesis that C. tyzzeri is coevolving with Mmm and Mmd.  相似文献   
995.
Rhodopsin photosensors of phototactic algae act as light-gated cation channels when expressed in animal cells. These proteins (channelrhodopsins) are extensively used for millisecond scale photocontrol of cellular functions (optogenetics). We report characterization of PsChR, one of the phototaxis receptors in the alga Platymonas (Tetraselmis) subcordiformis. PsChR exhibited ∼3-fold higher unitary conductance and greater relative permeability for Na+ ions, as compared with the most frequently used channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Photocurrents generated by PsChR in HEK293 cells showed lesser inactivation and faster peak recovery than those by CrChR2. Their maximal spectral sensitivity was at 445 nm, making PsChR the most blue-shifted channelrhodopsin so far identified. The λmax of detergent-purified PsChR was 437 nm at neutral pH and exhibited red shifts (pKa values at 6.6 and 3.8) upon acidification. The purified pigment undergoes a photocycle with a prominent red-shifted intermediate whose formation and decay kinetics match the kinetics of channel opening and closing. The rise and decay of an M-like intermediate prior to formation of this putative conductive state were faster than in CrChR2. PsChR mediated sufficient light-induced membrane depolarization in cultured hippocampal neurons to trigger reliable repetitive spiking at the upper threshold frequency of the neurons. At low frequencies spiking probability decreases less with PsChR than with CrChR2 because of the faster recovery of the former. Its blue-shifted absorption enables optogenetics at wavelengths even below 400 nm. A combination of characteristics makes PsChR important for further research on structure-function relationships in ChRs and potentially useful for optogenetics, especially for combinatorial applications when short wavelength excitation is required.  相似文献   
996.
Vascular cells are particularly susceptible to oxidative stress that is believed to play a key role in the pathogenesis of cardiovascular disorders. Thioredoxin‐1 (Trx‐1) is an oxidative stress‐limiting protein with anti‐inflammatory and anti‐apoptotic properties. In contrast, its truncated form (Trx‐80) exerts pro‐inflammatory effects. Here we analyzed whether Trx‐80 might exert atherogenic effects by promoting macrophage differentiation into the M1 pro‐inflammatory phenotype. Trx‐80 at 1 µg/ml significantly attenuated the polarization of anti‐inflammatory M2 macrophages induced by exposure to either IL‐4 at 15 ng/ml or IL‐4/IL‐13 (10 ng/ml each) in vitro, as evidenced by the expression of the characteristic markers, CD206 and IL‐10. By contrast, in LPS‐challenged macrophages, Trx‐80 significantly potentiated the differentiation into inflammatory M1 macrophages as indicated by the expression of the M1 cytokines, TNF‐α and MCP‐1. When Trx‐80 was administered to hyperlipoproteinemic ApoE2.Ki mice at 30 µg/g body weight (b.w.) challenged either with LPS at 30 µg/30 g (b.w.) or IL‐4 at 500 ng/30 g (b.w.), it significantly induced the M1 phenotype but inhibited differentiation of M2 macrophages in thymus and liver. When ApoE2.Ki mice were challenged once weekly with LPS for 5 weeks, they showed severe atherosclerotic lesions enriched with macrophages expressing predominantly M1 over M2 markers. Such effect was potentiated when mice received daily, in addition to LPS, the Trx‐80. Moreover, the Trx‐80 treatment led to a significantly increased aortic lesion area. The ability of Trx‐80 to promote differentiation of macrophages into the classical proinflammatory phenotype may explain its atherogenic effects in cardiovascular diseases. J. Cell. Physiol. 228: 1577–1583, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
997.
Origins of Life and Evolution of Biospheres - We apply a novel definition of biological systems to a series of reproducible observations on a blockchain-based distributed virtual machine (dVM). We...  相似文献   
998.
Legionella pneumophila is an intracellular pathogen that causes Legionnaire''s disease in humans. This bacterium can be found in freshwater environments as a free‐living organism, but it is also an intracellular parasite of protozoa. Human infection occurs when inhaled aerosolized pathogen comes into contact with the alveolar mucosa and replicates in alveolar macrophages. Legionella enters the host cell by phagocytosis and redirects the Legionella‐containing phagosomes from the phagocytic maturation pathway. These nascent phagosomes fuse with ER‐derived secretory vesicles and membranes forming the Legionella‐containing vacuole. Legionella subverts many host cellular processes by secreting over 300 effector proteins into the host cell via the Dot/Icm type IV secretion system. The cellular function for many Dot/Icm effectors is still unknown. Here, we present a structural and functional study of L. pneumophila effector RavA (Lpg0008). Structural analysis revealed that the RavA consists of four ~85 residue long α‐helical domains with similar folds, which show only a low level of structural similarity to other protein domains. The ~90 residues long C‐terminal segment is predicted to be natively unfolded. We show that during L. pneumophila infection of human cells, RavA localizes to the Golgi apparatus and to the plasma membrane. The same localization is observed when RavA is expressed in human cells. The localization signal resides within the C‐terminal sequence C409WTSFCGLF417. Yeast‐two‐hybrid screen using RavA as bait identified RAB11A as a potential binding partner. RavA is present in L. pneumophila strains but only distant homologs are found in other Legionella species, where the number of repeats varies.  相似文献   
999.

The temperature-driven plasmon-exciton coupling in thermoresponsive dextran-graft-PNIPAM/Au nanoparticle/CdTe quantum dot (D-g-PNIPAM/Au NPs/CdTe QDs) hybrid nanosystem was studied. A significant (0.84 eV) splitting of the absorption peak was observed in the absorption spectrum of the nanosystem, which reflects the fact of formation of plexcitons, occurring due to strong plasmon-exciton coupling. An increasing with time plasmonic enhancement of the photoluminescence of CdTe QDs was revealed, as a result of the penetration of quantum dots into the volume of the D-g-PNIPAM/Au NP hybrid nanosystem and bonding to it. The heating–cooling cycle of the aqueous solution of the studied nanosystem leads to a reversible quenching-recovery alteration of the QD photoluminescence. The quenching was rationalized as a result of an increased probability of nonradiative resonance energy transfer (RET) from CdTe QDs to Au NPs, which occurs due to shortening of the NP-QD distance, caused by shrinking of the macromolecule due to cooling-induced lower critical solution temperature phase transition. Increasing the NP-QD distance in the heating stage recovers the QD PL intensity. The observed effect opens up opportunities for the controlled reversible temperature-driven tuning of the photoluminescence intensity of D-g-PNIPAM/Au NP/CdTe QD nanosystem, which is highly important for its potential use in photonics and biomedical applications.

  相似文献   
1000.
International Journal of Peptide Research and Therapeutics - Natural and chemically modified N-terminal galanin fragments (WTLNSAGYLLGPHA-OH (G1) and WTLNSAGYLLGPβAH-OH (G2), respectively)...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号