首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1836篇
  免费   134篇
  2022年   22篇
  2021年   43篇
  2020年   17篇
  2019年   31篇
  2018年   36篇
  2017年   32篇
  2016年   55篇
  2015年   58篇
  2014年   68篇
  2013年   95篇
  2012年   161篇
  2011年   134篇
  2010年   94篇
  2009年   91篇
  2008年   113篇
  2007年   127篇
  2006年   94篇
  2005年   110篇
  2004年   103篇
  2003年   78篇
  2002年   83篇
  2001年   22篇
  2000年   19篇
  1999年   11篇
  1998年   18篇
  1997年   18篇
  1996年   9篇
  1995年   14篇
  1994年   6篇
  1992年   9篇
  1991年   11篇
  1990年   12篇
  1989年   8篇
  1988年   6篇
  1987年   9篇
  1986年   9篇
  1985年   6篇
  1984年   12篇
  1983年   9篇
  1982年   8篇
  1981年   5篇
  1980年   7篇
  1979年   9篇
  1978年   9篇
  1976年   7篇
  1974年   9篇
  1973年   5篇
  1972年   7篇
  1971年   8篇
  1969年   6篇
排序方式: 共有1970条查询结果,搜索用时 15 毫秒
991.

Background  

Oligonucleotide frequencies were shown to be conserved signatures for bacterial genomes, however, the underlying constraints have yet not been resolved in detail. In this paper we analyzed oligonucleotide usage (OU) biases in a comprehensive collection of 155 completely sequenced bacterial chromosomes, 316 plasmids and 104 phages.  相似文献   
992.
Bacterial plasmids of low copy number, P1 prophage among them, are actively partitioned to nascent daughter cells. The process is typically mediated by a pair of plasmid-encoded proteins and a cis-acting DNA site or cluster of sites, referred to as the plasmid centromere. P1 ParB protein, which binds to the P1 centromere (parS), can spread for several kilobases along flanking DNA. We argue that studies of mutant ParB that demonstrated a strong correlation between spreading capacity and the ability to engage in partitioning may be misleading, and describe here a critical test of the dependence of partitioning on the spreading of the wild-type protein. Physical constraints imposed on the spreading of P1 ParB were found to have only a minor, but reproducible, effect on partitioning. We conclude that, whereas extensive ParB spreading is not required for partitioning, spreading may have an auxiliary role in the process.  相似文献   
993.
Myosin light chain kinases (MLCK) are a family of signaling proteins that are required for cytoskeletal remodeling in myocytes. Recently, two novel MLCK proteins, SPEG and obscurin-MLCK, were identified with the unique feature of two tandemly-arranged MLCK domains. In this study, the evolutionary origins of this MLCK subfamily were traced to a probable orthologue of obscurin-MLCK in Drosophila melanogaster, Drosophila Unc-89, and the MLCK kinase domains of zebrafish SPEG, zebrafish obscurin-MLCK, and human SPEG were characterized. Phylogenetic analysis of the MLCK domains indicates that the carboxy terminal kinase domains of obscurin-MLCK, SPEG and Unc-89 are more closely related to each other than to the amino terminal kinase domains or to other MLCKs, supporting the assertion that obscurin-MLCK is the vertebrate orthologue of Caenorhabditis elegans Unc-89, a giant multidomain protein that is required for normal myofibril assembly. The apparent lack of an invertebrate orthologue of SPEG and the conserved exon structure of the kinase domains between SPEG and obscurin-MLCK suggests that SPEG arose from obscurin-MLCK by a gene duplication event. The length of the primary amino acid sequence between the immunoglobulin (Ig) domains associated with the MLCK motifs is conserved in obscurin-MLCK, SPEG and C. elegans Unc-89, suggesting that these putative protein interaction domains may target the kinases to highly conserved intracellular sites. The conserved arrangement of the tandem MLCK domains and their relatively restricted expression in striated muscle indicates that further characterization of this novel MLCK subfamily may yield important insights into cardiac and skeletal muscle physiology.Edited by D. Tautz  相似文献   
994.
The composition of microflora in different sections of the reproductive tract of women with disturbances of reproductive function was studied. The study revealed that the spectrum of microorganisms isolated from a bioptic specimen taken from the cavity of the small pelvis was narrower in comparison with such spectrum in material aspirated from the uterine cavity. The latter was narrower in comparison with that in the microflora of the lower sections of the reproductive tract. The possibility for one and the same patient to have both similarities and essential differences in the spectra of microflora in different sections of the reproductive tract was shown.  相似文献   
995.
The widely accepted model of reaction center /RC/ functioning is proved to come into contradiction with some recent data. In particular, it cannot explain why only a minor part of electronic excitations (approximately 10%) escapes from excited RC special pairs back to antenna BChls. Therefore we believe that the model must be substantially modernized. In 1981 we developed a new model/1,2/. We suggested a femtosecond state to precede primary e-transfer reaction due to reorientation of water molecule dipole in the electric field of excited RC dimer. This mechanism is responsible for energy trapping before the primary e-transport occurs. During last years his mechanism got support from various experimental works. Now this polarization model claims to fit all reliable experimental data at least in bacterial photosynthesis.  相似文献   
996.
Two pea (Pisum sativum L.) symbiotic mutants SGEFix(-)-1 (sym40) and SGEFix(-)-2 (sym33) with abnormalities in infection thread development and function in symbiotic root nodules have been characterised in terms of mycorrhizal colonisation of roots, shoot and root biomass accumulation and shoot and root phosphorus (P) content. The mutation in gene sym33 decreased mycorrhizal colonisation of roots (except arbuscule abundance in mycorrhizal root fragments, which increased) but did not change the effectiveness of mycorrhiza function. The mutation in sym40 did not affect either of these processes. Both mutants showed differences in plant development compared with the wild-type line SGE. The mutants had delayed flowering and pod ripening, and shoot/root biomass ratios and P accumulation also differed from those of SGE. These observations suggest that the gene mutations cause systemic changes in plant development.  相似文献   
997.
The modification of a peptide antigen by a fatty acid such as palmitic acid is now recognized as a mean to induce cellular responses. Mixtures of lipopeptides, obtained by combining individually synthesized compounds, were shown to be promising synthetic vaccine candidates. Usually, in lipopeptide synthesis, the fatty acyl moiety is introduced on the crude peptide chain using solid-phase methods. The separation of the target compound from impurities by RP-HPLC is often complicated by the amphiphilic properties of lipopeptides and results in low overall yields. To overcome the difficulties associated with lipopeptide synthesis and mixture preparation, we have developed a method where the fatty acyl moiety is site-specifically and collectively introduced in solution onto a mixture of individually prepurified peptides. The lipidation is based on the quasistoichiometric and high-yielding ligation of a glyoxylyl lipid with hydrazinoacetyl peptides. The hydrazone constructs were prepared in a salt-free medium and could be isolated by direct lyophilization of the reaction mixture. This process is compatible with cysteinyl peptides, and no aggregation nor degradation could be observed.  相似文献   
998.
Recent experiments show that the conformation of filament proteins play a role in the motility and morphology of many different types of bacteria. Conformational changes in the protein subunits may produce forces to drive propulsion and cell division. Here we present a molecular mechanism by which these forces can drive cell motion. Coupling of a biochemical cycle, such as ATP hydrolysis, to the dynamics of elastic filaments enable elastic filaments to propagate deformations that generate propulsive forces. We demonstrate this possibility for two classes of wall-less bacteria called mollicutes: the swimming of helical-shaped Spiroplasma, and the gliding motility of Mycoplasma.  相似文献   
999.
Escherichia coli strain MG1655 was chosen for sequencing because the few mutations it carries (ilvG rfb-50 rph-1) were considered innocuous. However, it has a number of growth defects. Internal pyrimidine starvation due to polarity of the rph-1 allele on pyrE was problematic in continuous culture. Moreover, the isolate of MG1655 obtained from the E. coli Genetic Stock Center also carries a large deletion around the fnr (fumarate-nitrate respiration) regulatory gene. Although studies on DNA microarrays revealed apparent cross-regulation of gene expression between galactose and lactose metabolism in the Stock Center isolate of MG1655, this was due to the occurrence of mutations that increased lacY expression and suppressed slow growth on galactose. The explanation for apparent cross-regulation between galactose and N-acetylglucosamine metabolism was similar. By contrast, cross-regulation between lactose and maltose metabolism appeared to be due to generation of internal maltosaccharides in lactose-grown cells and may be physiologically significant. Lactose is of restricted distribution: it is normally found together with maltosaccharides, which are starch degradation products, in the mammalian intestine. Strains designated MG1655 and obtained from other sources differed from the Stock Center isolate and each other in several respects. We confirmed that use of other E. coli strains with MG1655-based DNA microarrays works well, and hence these arrays can be used to study any strain of interest. The responses to nitrogen limitation of two urinary tract isolates and an intestinal commensal strain isolated recently from humans were remarkably similar to those of MG1655.  相似文献   
1000.
The 5alpha-reduction of testosterone in target tissues is a key step in androgen physiology; however, 5alpha-reduced C(19) steroids are sometimes synthesized in testis via a pathway that does not involve testosterone as an intermediate. We studied the metabolism of 5alpha-reduced C(21) steroids by human cytochrome P450c17 (hCYP17), the enzyme responsible for conversion of C(21) steroids to C(19) steroids via its 17alpha-hydroxylase and 17,20-lyase activities. hCYP17 17alpha-hydroxylates 5alpha-pregnan-3,20-dione, but little androstanedione is formed by 17,20-lyase activity. hCYP17 also 17alpha-hydroxylates 5alpha-pregnan-3alpha-ol-20-one and the 5alpha-pregnan-3alpha,17alpha-diol-20-one intermediate is rapidly converted to androsterone by 17,20-lyase activity. Furthermore, 5alpha-pregnan-3alpha,17alpha-diol-20-one is a better substrate for the 17,20-lyase reaction than the preferred substrate 17alpha-hydroxypregnenolone and cytochrome b(5) stimulates androsterone formation only 3-fold. Both 5alpha-pregnan-3alpha-ol-20-one and 5alpha-pregnan-3alpha,17alpha-diol-20-one bind to hCYP17 with higher affinity than does progesterone. We conclude that 5alpha-reduced, 3alpha-hydroxy-C(21) steroids are excellent, high-affinity substrates for hCYP17. The brisk metabolism of 5alpha-pregnan-3alpha,17alpha-diol-20-one to androsterone by CYP17 explains how, when 5alpha-reductases are present, the testis can produce C(19) steroids androsterone and androstanediol from 17alpha-hydroxyprogesterone without the intermediacy of androstenedione and testosterone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号