首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1981篇
  免费   118篇
  2023年   8篇
  2022年   7篇
  2021年   33篇
  2020年   13篇
  2019年   22篇
  2018年   30篇
  2017年   18篇
  2016年   44篇
  2015年   88篇
  2014年   81篇
  2013年   102篇
  2012年   130篇
  2011年   139篇
  2010年   79篇
  2009年   77篇
  2008年   102篇
  2007年   111篇
  2006年   110篇
  2005年   85篇
  2004年   105篇
  2003年   106篇
  2002年   94篇
  2001年   38篇
  2000年   23篇
  1999年   36篇
  1998年   28篇
  1997年   24篇
  1996年   16篇
  1995年   16篇
  1994年   17篇
  1993年   20篇
  1992年   29篇
  1991年   24篇
  1990年   22篇
  1989年   29篇
  1988年   13篇
  1987年   13篇
  1986年   14篇
  1985年   14篇
  1984年   19篇
  1983年   17篇
  1982年   7篇
  1981年   10篇
  1979年   12篇
  1978年   11篇
  1977年   8篇
  1975年   5篇
  1974年   6篇
  1973年   5篇
  1971年   6篇
排序方式: 共有2099条查询结果,搜索用时 15 毫秒
121.
122.
-1,3-glucan polymers are major structural components of fungal cell walls, while cellulosic -1,4-glucan is the predominant polysaccharide in plant cell walls. Plant -1,3-glucan, called callose, is produced in pollen and in response to pathogen attack and wounding, but it has been unclear whether callose synthases can also produce cellulose and whether plant cellulose synthases may also produce -1,3-glucans. We describe here an Arabidopsis gene, AtGsl5, encoding a plasma membrane-localized protein homologous to yeast -1,3-glucan synthase whose expression partially complements a yeast -1,3-glucan synthase mutant. AtGsl5 is developmentally expressed at highest levels in flowers, consistent with flowers having high -1,3-glucan synthase activities for deposition of callose in pollen. A role for AtGsl5 in callose synthesis is also indicated by AtGsl5expression in the Arabidopsis mpk4 mutant which exhibits systemic acquired resistance (SAR), elevated -1,3-glucan synthase activity, and increased callose levels. In addition, AtGsl5 is a likely target of salicylic acid (SA)-dependent SAR, since AtGsl5mRNA accumulation is induced by SA in wild-type plants, while expression of the nahG salicylate hydroxylase reduces AtGsl5 mRNA levels in the mpk4 mutant. These results indicate that AtGsl5is likely involved in callose synthesis in flowering tissues and in the mpk4 mutant.  相似文献   
123.
Heterotrimeric G-proteins at the plasma membrane serve as switches between heptahelical receptors and intracellular signal cascades. Likewise endomembrane associated G-proteins may transduce signals from intracellular compartments provided they consist of a functional trimer. Using quantitative immunoelectron microscopy we found heterotrimeric G-protein subunits Galpha2, Galpha(q/11), Gbeta2 and Gbeta5 to reside on secretory granules in chromaffin cells of rat adrenal glands.Thus rat chromaffin granules are equipped with functional G-proteins that consist of a specific alpha-, beta- and probably gamma-subunit combination. Serotonin uptake into a crude rat chromaffin granule preparation was inhibited by activated Galphao2 (10 nM) to nearly the same extent as by GMppNp (50 microM) whereas GDPbetaS was ineffective. The data support the idea that vesicular G-proteins directly regulate the transmitter content of secretory vesicles. In this respect Galphao2 appears to be the main regulator of vesicular momoamine transporter activity.  相似文献   
124.
A new multimodal pain assessment model was developed integrating electrical, mechanical, cold, and warmth stimuli into the same device. The device, with a bag and electrodes for electrical stimulation, was positioned in the lower part of the esophagus in 11 healthy subjects. Mechanical stimuli were delivered with an impedance planimetric system. Thermal stimuli were performed by circulating water of different temperatures (5-50 degrees C) inside the bag. All subjects reported both nonpainful and painful local and referred sensations to all stimuli. Temporal summation to repeated electrical stimuli could be studied. For all stimuli, there was a relationship between stimulus intensity and pain intensity. The referred pain area increased with increasing intensity of the electrical and mechanical stimuli. There were several differences between the sensations evoked by the four stimulus modalities, indicating activation of different visceral nerve pathways. This model offers the possibility for controlled multimodal stimuli activating the superficial and deeper layers of the human gut and should be used in basic, clinical, and pharmacological pain studies.  相似文献   
125.
T cell hybridomas were raised against the glycopeptide S72 (Core-1) containing the tumor-associated disaccharide Gal (1–3) GalNAc (Core-1) O-linked to serine at position 72 in the mouse hemoglobin derived decapeptide Hb (67–76). All hybridomas recognized the glycopeptide S72 (Core-1). Two of the selected hybridomas responded, however, much better to the S72 (Tn) glycopeptide containing the monosaccharide GalNAc O-linked to serine. In addition, one hybridoma cross-responded to the glycopeptide T72 (Core-1) having a threonine at position 72 instead of a serine. No cross-responses were found to other glycopeptides consisting of the same hemoglobin peptide with different glycans attached or to the unglycosylated peptides. The T cell receptor V and V usage was clearly diverse. The CDR3 regions demonstrated moreover a predominance of small polar amino acid side chains, and three hybridomas contained a common sequence motif. All the sequenced CDR3 regions contained furthermore a conserved proline-glycine motif. In conclusion, immunization with the disaccharide containing glycopeptides S72 (Core-1) created a heterogeneous population of glycopeptide specific T cells with the ability of cross-responding toward related glycopeptides.  相似文献   
126.
Using molecular genetics we have introduced uncoupled ATPase activity in two different bacterial species, Escherichia coli and Lactococcus lactis, and determined the elasticities of the growth rate and glycolytic flux towards the intracellular [ATP]/[ADP] ratio. During balanced growth in batch cultures of E. coli the ATP demand was found to have almost full control on the glycolytic flux (FCC=0.96) and the flux could be stimulated by 70%. In contrast to this, in L. lactis the control by ATP demand on the glycolytic flux was close to zero. However, when we used non-growing cells of L. lactis (which have a low glycolytic flux) the ATP demand had a high flux control and the flux could be stimulated more than two fold. We suggest that the extent to which ATP demand controls the glycolytic flux depends on how much excess capacity of glycolysis is present in the cells.  相似文献   
127.
Direct visualization of the fluid-phase/ordered-phase domain structure in mica-supported bilayers composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-distearoyl-sn-glycero-3-phosphocholine mixtures is performed with atomic force microscopy. The system studied is a double bilayer supported on a mica surface in which the top bilayer (which is not in direct contact with the mica) is visualized as a function of temperature. Because the top bilayer is not as restricted by the interactions with the surface as single supported bilayers, its behavior is more similar to a free-standing bilayer. Intriguing straight-edged anisotropic fluid-phase domains were observed in the fluid-phase/ordered-phase coexistence temperature range, which resemble the fluid-phase/ordered-phase domain patterns observed in giant unilamellar vesicles composed of such phospholipid mixtures. With the high resolution provided by atomic force microscopy, we investigated the origin of these anisotropic lipid domain patterns, and found that ripple phase formation is directly responsible for the anisotropic nature of these domains. The nucleation and growth of fluid-phase domains are found to be directed by the presence of ripples. In particular, the fluid-phase domains elongate parallel to the ripples. The results show that ripple phase formation may have implications for domain formation in biological systems.  相似文献   
128.
DNA topoisomerase (topo) II catalyses topological genomic changes essential for many DNA metabolic processes. It is also regarded as a structural component of the nuclear matrix in interphase and the mitotic chromosome scaffold. Mammals have two isoforms (alpha and beta) with similar properties in vitro. Here, we investigated their properties in living and proliferating cells, stably expressing biofluorescent chimera of the human isozymes. Topo IIalpha and IIbeta behaved similarly in interphase but differently in mitosis, where only topo IIalpha was chromosome associated to a major part. During interphase, both isozymes joined in nucleolar reassembly and accumulated in nucleoli, which seemed not to involve catalytic DNA turnover because treatment with teniposide (stabilizing covalent catalytic DNA intermediates of topo II) relocated the bulk of the enzymes from the nucleoli to nucleoplasmic granules. Photobleaching revealed that the entire complement of both isozymes was completely mobile and free to exchange between nuclear subcompartments in interphase. In chromosomes, topo IIalpha was also completely mobile and had a uniform distribution. However, hypotonic cell lysis triggered an axial pattern. These observations suggest that topo II is not an immobile, structural component of the chromosomal scaffold or the interphase karyoskeleton, but rather a dynamic interaction partner of such structures.  相似文献   
129.
130.
Microbial catabolic capacity in digesta from the gastrointestinal tract of pigs fed either dry feed or fermented liquid feed (FLF) was determined with the PhenePlate multisubstrate system. The in vitro technique was modified to analyze the kinetics of substrate catabolism mediated by the standing stock of enzymes (potential rates of fermentation), allowing a quantitative evaluation of the dietary effect on the catabolic capacity of the microbiota. In total, the potential rates of fermentation were significantly reduced in digesta from the large intestine (cecum, P < 0.1; colon, P < 0.01; and rectum, P < 0.0001) of pigs fed FLF compared to pigs fed dry feed. No effect of diet was observed in the stomach (P = 0.71) or the distal part of the small intestine (P = 0.97). The highest rates of fermentation and the most significant effect of diet were observed for readily fermentable carbohydrates like maltose, sucrose, and lactose. Feeding FLF to pigs also led to a reduction in the large intestine of the total counts of anaerobic bacteria in general and lactic acid bacteria specifically, as well as of microbial activity, as determined by the concentration of ATP and short-chain fatty acids. The low-molecular-weight carbohydrates were fermented mainly to lactic acid in the FLF before being fed to the animals. This may have limited microbial nutrient availability in the digesta reaching the large intestine of pigs fed FLF and may have caused the observed reduction in activity and density of the cecal and colonic microbial population. On the other hand, feeding FLF to pigs reduced the viable counts of coliform bacteria (indicator of Escherichia coli and Salmonella spp.) most profoundly in the stomach and the distal part of the small intestine, probably due to the bactericidal effect of lactic acid and low pH. The results presented clearly demonstrate that feeding FLF to pigs had a great impact on the indigenous microbiota, as reflected in bacterial numbers, short-chain fatty acid concentration, and substrate utilization. However, completely different mechanisms may be involved in the proximal and the distal parts of the gastrointestinal tract. The present study illustrates the utility of the PhenePlate system for quantifying the catabolic capacity of the indigenous gastrointestinal tract microbiota.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号