首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   16篇
  2024年   1篇
  2020年   4篇
  2019年   4篇
  2018年   1篇
  2017年   2篇
  2016年   9篇
  2015年   15篇
  2014年   14篇
  2013年   14篇
  2012年   6篇
  2011年   5篇
  2010年   4篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   5篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   5篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   5篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   7篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1987年   3篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
  1970年   1篇
  1962年   1篇
  1957年   1篇
  1942年   1篇
  1929年   1篇
排序方式: 共有155条查询结果,搜索用时 31 毫秒
101.
102.
Summary

Meiotic reinitiation has been studied in Locusta migratoria and Palaemon serratus in relation to the titre of free ecdysteroids present in the maturing oocyte. In both species meiotic reinitiation is characterized by two meiotic arrests, in prophase I and in metaphase I, and the first meiotic resumption which leads to germinal vesicle breakdown (GVBD) is correlated with increasing titres of ecdysteroids in the oocyte. Meiotic reinitiation has been successfully triggered in the oocytes of both species by incubation with physiological doses of ecdysteroids.  相似文献   
103.
Dietary amino acids can be transported into intestinal epithelial cells as di- and tripeptides by the action of the peptide transporter, PepT1 (SLC15A1). Expression of the chicken PepT1 (cPepT1) gene changes in response to dietary crude protein level; however, the molecular mechanism governing this regulation is unknown. This study analyzed the promoter region of the cPepT1 gene. Using deletion analysis, positive-acting (-314 to -261, -169 to -155, and -120 to -60) and negative-acting (-419 to -386 and -214 to -169) regions were mapped in transfected chick embryo fibroblasts (CEF). The addition of neither amino acids Phe, Arg, or Val, nor the dipeptides Gly-Sar (glycyl-sarcosine), Gly-Pro, Gly-Phe, Met-Pro, Met-Lys or Lys-Lys, had an effect on cPepT1 promoter activity in transfected CEF. The cPepT1 promoter was more active in CEF and primary chicken intestinal cells than in chicken liver cells. This study represents a functional characterization of the molecular regulation of the chicken PepT1 gene.  相似文献   
104.

Objective

To determine the reliability and validity of the Multimedia Activity Recall for Children and Adults (MARCA) in people with chronic obstructive pulmonary disease (COPD).

Design

People with COPD and their carers completed the Multimedia Activity Recall for Children and Adults (MARCA) for four, 24-hour periods (including test-retest of 2 days) while wearing a triaxial accelerometer (Actigraph GT3X+®), a multi-sensor armband (Sensewear Pro3®) and a pedometer (New Lifestyles 1000®).

Setting

Self reported activity recalls (MARCA) and objective activity monitoring (Accelerometry) were recorded under free-living conditions.

Participants

24 couples were included in the analysis (COPD; age 74.4±7.9 yrs, FEV1 54±13% Carer; age 69.6±10.9 yrs, FEV1 99±24%).

Interventions

Not applicable.

Main Outcome Measure(s)

Test-retest reliability was compared for MARCA activity domains and different energy expenditure zones. Validity was assessed between MARCA-derived physical activity level (in metabolic equivalent of task (MET) per minute), duration of moderate to vigorous physical activity (min) and related data from the objective measurement devices. Analysis included intra-class correlation coefficients (ICC), Bland-Altman analyses, paired t-tests (p) and Spearman''s rank correlation coefficients (rs).

Results

Reliability between occasions of recall for all activity domains was uniformly high, with test-retest correlations consistently >0.9. Validity correlations were moderate to strong (rs = 0.43–0.80) across all comparisons. The MARCA yields comparable PAL estimates and slightly higher moderate to vigorous physical activity (MVPA) estimates.

Conclusion

In older adults with chronic illness, the MARCA is a valid and reliable tool for capturing not only the time and energy expenditure associated with physical and sedentary activities but also information on the types of activities.  相似文献   
105.
106.
The ecological impacts of landscape modification and urbanisation have transformed the composition of plant and animal assemblages, and altered the condition of ecosystems globally. Landscape transformation influences the spatial distribution of species and ecological functions by selecting for generalist species with wide ecological niches, which can adapt to opportunities in highly-modified environments. These effects of landscape modification can shape functional diversity on land, but it is not clear whether they have similar functional consequences in the sea. We used estuaries as a model system to test how landscape transformation alters functional diversity in coastal seascapes, and measured how variation in level of urbanisation, catchment modification and habitat loss influenced fish diversity across thirty-nine estuaries in eastern Australia. Fish were surveyed with baited remote underwater video stations and functional diversity was indexed with three metrics that describe variation in the functional traits and niche space of assemblages. The extent of landscape transformation in the catchment of each estuary was associated with variation in the functional diversity of estuarine fish assemblages. These effects were, however, not what we expected as functional diversity was highest in modified estuaries that supported a large area of both urban and grazing land in their catchments, were bordered by a small area of natural terrestrial vegetation and that contained a moderate area of mangroves. Zoobenthivores and omnivores dominated assemblages in highly-modified estuaries, and piscivorous fishes were common in natural waterways. Our results demonstrate, that the modification and urbanisation of ecosystems on land can alter functional diversity in the sea. Intense landscape transformation appears to select for abundant generalists with wide trophic niches, and against species with specialised diets, and we suggest that these changes might have fundamental consequences for ecosystem functioning in estuaries, and other highly modified seascapes.  相似文献   
107.
Phosphorylation of proteins is an important mechanism used to regulate most cellular processes. Recently, we completed an extensive phosphoproteomic analysis of the core proteins that constitute the Saccharomyces cerevisiae centrosome. Here, we present a study of phosphorylation sites found on the mitotic exit network (MEN) proteins, most of which are associated with the cytoplasmic face of the centrosome. We identified 55 sites on Bfa1, Cdc5, Cdc14 and Cdc15. Eight sites lie in cyclin-dependent kinase motifs (Cdk, S/T-P), and 22 sites are completely conserved within fungi. More than half of the sites were found in centrosomes from mitotic cells, possibly in preparation for their roles in mitotic exit. Finally, we report phosphorylation site information for other important cell cycle and regulatory proteins.Key words: in vivo phosphorylation, yeast centrosome, mitotic exit network (MEN), cell cycle, protein kinase, Cdk (cyclin-dependent kinase)/Cdc28, Plk1 (polo-like kinase)/Cdc5Reversible protein phosphorylation leads to changes in targeting, structure and stability of proteins and is used widely to modulate biochemical reactions in the cell. We are interested in phosphoregulation of centrosome duplication and function in the yeast Saccharomyces cerevisiae. Centrosomes nucleate microtubules and, upon duplication during the cell cycle, form the two poles of the bipolar mitotic spindle used to segregate replicated chromosomes into the two daughter cells. Timing and spatial cues are highly regulated to ensure that elongation of the mitotic spindle and separation of sister chromatids occur prior to progression into late telophase and initiation of mitotic exit. The mitotic exit network (MEN) regulates this timing through a complex signaling cascade activated at the centrosome that triggers the end of mitosis, ultimately through mitotic cyclin-dependent kinase (Cdk) inactivation (reviewed in ref. 1).The major components of the MEN pathway (Fig. 1) are a Ras-like GTPase (Tem1), an activator (Lte1) with homology to nucleotide exchange factors, a GTPase-activating protein (GAP) complex (Bfa1/Bub2), several protein kinases [Cdc5 (Plk1 in humans), Cdc15 and Dbf2/Mob1] and Cdc14 phosphatase (reviewed in ref. 25). Tem1 initiates the signal for the MEN pathway when switched to a GTP-active state. Prior to activation at anaphase, it is held at the centrosome in an inactive GDP-bound state by an inhibiting GAP complex, Bfa1/Bub2.6 The Bfa1/Bub2 complex and the inactive Tem1 are localized at the mother centrosome destined to move into the budded cell upon chromosome segregation, whereas the activator Lte1 is localized at the tip of the budded cell. These separate localizations ensure that Lte1 and Tem1 only interact in late anaphase, when the mitotic spindle elongates.7,8 Lte1 has been thought to activate Tem1 as a nucleotide exchange factor, although more recent evidence suggests that it may instead affect Bfa1 localization.9 In addition, full activation of Tem1 is achieved through Cdc5 phosphorylation of the negative regulator Bfa1 10 and potentially through phosphorylation of Lte1. GTP-bound Tem1 is then able to recruit Cdc15 to the centrosome, allowing for Dbf2 activation.3 The final step in the MEN pathway is release of Cdc14 from the nucleolus, which is at least partially due to phosphorylation by Dbf211 an leads to mitotic cyclin degradation and inactivation of the mitotic kinase.2Open in a separate windowFigure 1Schematic representation of the MEN proteins and pathway. MEN protein localization is shown within a metaphase cell when mitotic exit is inhibited and in a late anaphase cell when mitotic exit is initiated. Primary inhibition and activation events are described below the cells.Recently, we performed a large-scale analysis of phosphorylation sites on the 18 core yeast centrosomal proteins present in enriched centrosomal preparations.12 In total, we mapped 297 sites on 17 of the 18 proteins and described their cell cycle regulation, levels of conservation and demonstrated defects in centrosome assembly and function resulting from mutating selected sites. MEN proteins were also identified in the centrosome preparations. This was expected, because Nud1, one of the 18 core centrosome components, is known to recruit several MEN proteins to the centrosome13 as part of its function in mitotic exit.14,15 As phosphorylation is essential to several steps in the MEN pathway, beginning with recruitment of Bfa1/Bub2 by phosphorylated Nud1,15 we were interested in mapping in vivo phosphorylation sites on the MEN proteins associated with centrosomes and identifying when they occur during the cell cycle.We combined centrosome enrichment with mass spectrometry analysis to examine phosphorylation from asynchronously growing cells.12 Centrosomes were also prepared from cells arrested in G1 and mitosis12 to monitor potentially cell cycle-regulated sites. We obtained significant coverage of a number of the MEN proteins, several of which have human homologs (and33, column 1), of which eight sites lie within Cdk/Cdc28 motifs [S/T(P)], (23 Mob1 and Dbf2 are known phosphoproteins24 for which we observed peptide coverage but no phosphorylation. Surprisingly, we did not detect phosphorylation on Bub2 despite the high peptide coverage; it is possible that the mitotic centrosome preparations (using a Cdc20 depletion protocol) affect the phosphorylation state of Bub2, as Bub2 is required for mitotic exit arrest in cdc20 mutants.25 Additionally, specific phosphorylation sites have not been mapped on Bub2, suggesting that modifications on this protein may be difficult to observe by mass spectrometry. Lte1 does not localize to the centrosome, and we did not recover Lte1 peptides in our preparations. Many phosphorylation events on MEN proteins were observed in mitotic centrosomal preparations, most likely in preparation for their subsequent role in exit from mitosis (
MEN ProteinSequence CoverageTotal SitesS/T (P) SitesHuman Homologs
Bfa198%352N/A
Cdc1480%102CDC14A, 14B2
Cdc1512%31MST1, STK4
Cdc541%73PLK1, PLK2, PLK3
Bub267%--N/A
Tem118%--RAB22, RAB22A
Mob113%--MOB1B, 1A, 2A, 2B
Dbf22%--STK38, LATS1
TOTAL558
Open in a separate window

Table 2

Cell cycle regulators of MEN proteins
Cell Cycle Regulator
CdkCdc5Cdc14Dbf2
Bfa16,10,23,2425
Cdc14212611
Cdc521,27
Cdc15282831
Open in a separate window

Table 3

All phosphorylation sites identified in MEN proteins Bfa1, Cdc14, Cdc15 and Cdc5
Open in a separate window
Open in a separate window
Open in a separate windowConservation of domains or of individual residues of proteins is often correlated with function.26 We utilized a protein fungal alignment tool (SGD: www.yeastgenome.org/) to analyze the conservation of the individual phosphorylated residues among selected Saccharomyces strains. If an amino acid substitution occurred, we noted whether the alternate residue could also be phosphorylated [serine (S) or threonine (T)], or whether it mimicked phosphorylation with a negative charge [aspartic (D) or glutamic (E) acid]. Using these criteria with the 55 phosphorylation sites, we found 22 that were completely identical among the fungi, two that were conserved as potential phosphorylation sites (6 Interestingly, Cdc5-T238 is also conserved in human polo-like kinases (Plk1–3). In another study, Mohl et al. tested nonphosphorylatable mutations of Dbf2 kinase motifs adjacent to the nuclear localization domain within Cdc14 phosphatase. One mutant allele of CDC14 wherein four Dbf2 motif sites were changed to alanines, includes our mapped site, S546 (20 While exceptionally rich clusters of phosphorylation sites (≥ 5/50 residues) are rare in the yeast proteome,27 the dense negative charge associated with phosphorylation clusters can enhance the rapidity and magnitude of the resulting cellular event. Two of the MEN proteins examined, Bfa1 (24 out of 35 total sites) and Cdc14 (5 out of 10 total sites), showed evidence of phosphorylation clustering (Fig. 2). Mutating groups of these clustered sites could provide insight into how the negatively charged regions affect protein localization and/or function.Open in a separate windowFigure 2Clustering of phosphorylation sites within the MEN proteins, Bfa1 and Cdc14. All phosphorylation sites within Bfa1 and Cdc14 are shown along the X-axis, representing the primary protein sequence and the Y-axis denoting the number of sites. Sites are considered clustered if there are at least 5 sites with a density ≥ 1 per 10 amino acids, and are marked with a horizontal bracket.In addition to proteins known to be associated with the yeast centrosome, such as the MEN proteins described, we recovered limited peptides from a number of other cell cycle and regulatory proteins. The high sensitivity with which mass spectrometry can detect modifications on proteins enabled the identification of in vivo phosphorylation sites that are cataloged in Open in a separate windowOpen in a separate windowOur large-scale centrosome enrichment and phosphorylation analysis has yielded a rich library of phosphorylation events on core centrosomal components, those involved in the mitotic exit network and additional regulatory proteins. Information regarding the phosphorylation state of various proteins throughout the cell will be useful in studying their control and function.?

Table 4

Summary of phosphorylation sites identified in centrosomes from different cell cycle stages and their conservation
Open in a separate window
Open in a separate window  相似文献   
108.
Evidence against the use of surrogates for biomonitoring of Neotropical floodplains     
ANDRÉ A. PADIAL  STEVEN A. J. DECLERCK  LUC DE MEESTER  CLÁUDIA C. BONECKER  FABIO A. LANSAC‐TÔHA  LUZIA C. RODRIGUES  ALICE TAKEDA  SUELI TRAIN  LUIZ F. M. VELHO  LUIS M. BINI 《Freshwater Biology》2012,57(11):2411-2423
1. Community concordance measures the level of association between the compositional patterns shown by two groups of organisms. If strong community concordance occurs, one group could be used as a surrogate for another in conservation planning and biodiversity monitoring. In this study, we evaluated the variability in the strength of community concordance, the likely mechanisms underlying community concordance and the degree to which one community can predict another in a set of Neotropical floodplain lakes (Upper Paraná River floodplain, Brazil). 2. We used a data set including six aquatic communities: fish, macrophytes, benthic macroinvertebrates, zooplankton, phytoplankton and periphyton. We used Mantel and PROTEST approaches to evaluate the levels of community concordance in up to four sampling periods. Also, we used partial Mantel test and information about biotic interactions to investigate reasons for observed patterns of concordance. Finally, we used co‐correspondence analysis to evaluate the performance of one taxonomic group in predicting the structures of other communities. 3. The levels of community concordance varied over time for almost all cross‐taxa comparisons. Concordance between phytoplankton and periphyton probably resulted from similar responses to environmental gradients, whereas other patterns of concordance were likely generated by interactions among groups. However, the levels of predictability were low, and no particular taxonomic group significantly predicted all other groups. 4. The low and temporally variable levels of community concordance cast doubts on the use of surrogate groups for biodiversity management in Neotropical floodplains.  相似文献   
109.
Statistical discovery of site inter-dependencies in sub-molecular hierarchical protein structuring     
Kirk?K?DurstonEmail author  David?KY?Chiu  Andrew?KC?Wong  Gary?CL?Li 《EURASIP Journal on Bioinformatics and Systems Biology》2012,2012(1):8

Background

Much progress has been made in understanding the 3D structure of proteins using methods such as NMR and X-ray crystallography. The resulting 3D structures are extremely informative, but do not always reveal which sites and residues within the structure are of special importance. Recently, there are indications that multiple-residue, sub-domain structural relationships within the larger 3D consensus structure of a protein can be inferred from the analysis of the multiple sequence alignment data of a protein family. These intra-dependent clusters of associated sites are used to indicate hierarchical inter-residue relationships within the 3D structure. To reveal the patterns of associations among individual amino acids or sub-domain components within the structure, we apply a k-modes attribute (aligned site) clustering algorithm to the ubiquitin and transthyretin families in order to discover associations among groups of sites within the multiple sequence alignment. We then observe what these associations imply within the 3D structure of these two protein families.

Results

The k-modes site clustering algorithm we developed maximizes the intra-group interdependencies based on a normalized mutual information measure. The clusters formed correspond to sub-structural components or binding and interface locations. Applying this data-directed method to the ubiquitin and transthyretin protein family multiple sequence alignments as a test bed, we located numerous interesting associations of interdependent sites. These clusters were then arranged into cluster tree diagrams which revealed four structural sub-domains within the single domain structure of ubiquitin and a single large sub-domain within transthyretin associated with the interface among transthyretin monomers. In addition, several clusters of mutually interdependent sites were discovered for each protein family, each of which appear to play an important role in the molecular structure and/or function.

Conclusions

Our results demonstrate that the method we present here using a k- modes site clustering algorithm based on interdependency evaluation among sites obtained from a sequence alignment of homologous proteins can provide significant insights into the complex, hierarchical inter-residue structural relationships within the 3D structure of a protein family.
  相似文献   
110.
Enhanced phosphoserine insertion during Escherichia coli protein synthesis via partial UAG codon reassignment and release factor 1 deletion     
Ilka U. Heinemann  Alexis J. Rovner  Hans R. AerniSvetlana Rogulina  Laura ChengWilliam Olds  Jonathan T. FischerDieter Söll  Farren J. Isaacs  Jesse Rinehart 《FEBS letters》2012,586(20):3716-3722
Genetically encoded phosphoserine incorporation programmed by the UAG codon was achieved by addition of engineered elongation factor and an archaeal aminoacyl-tRNA synthetase to the normal Escherichia coli translation machinery (Park et al., 2011) Science 333, 1151) [2]. However, protein yield suffers from expression of the orthogonal phosphoserine translation system and competition with release factor 1 (RF-1). In a strain lacking RF-1, phosphoserine phosphatase, and where seven UAG codons residing in essential genes were converted to UAA, phosphoserine incorporation into GFP and WNK4 was significantly elevated, but with an accompanying loss in cellular fitness and viability.  相似文献   
[首页] « 上一页 [6] [7] [8] [9] [10] 11 [12] [13] [14] [15] [16] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号